Skip to main content

Advertisement

Log in

Heterospin iron complexes with dioxolenes functionalized with stable radicals: quantum chemical study

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A computational modeling (DFT UTPSSh/6-311++G(d,p)) of the electronic structures, energy characteristics, and magnetic properties of mononuclear iron complexes with tris-(2-pyridylmethyl)amine bases and dioxolenes bearing stable radicals (nitronyl nitroxyl, verdazyl, and dithiadiazolyl) was performed. Paramagnetism of all spin states of the molecules under study was predicted. The energy difference between the isomers of the studied complexes was found to be independent of the type of a radical substituent in the redox-active ligand but is controlled by varying the number of methyl groups in the ancillary N-donor base. The compounds potentially capable of exhibiting thermally initiated switching of spin states via the spin crossover mechanism were revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Sagdeev, S. E. Tolstikov, S. V. Fokin, I. V. Obsharova, S. V. Tumanov, S. L. Veber, G. V. Romanenko, A. S. Bogomyakov, M. V. Fedin, E. V. Tretyakov, M. Halcrow, V. I. Ovcharenko, Russ. Chem. Bull., 2017, 66, 222; DOI: https://doi.org/10.1007/s11172-017-1722-y.

    Article  CAS  Google Scholar 

  2. V. I. Ovcharenko, O. V. Kuznetsova, Russ. Chem. Rev., 2020, 89, 1261; DOI: https://doi.org/10.1070/RCR4981.

    Article  CAS  Google Scholar 

  3. G. V. Romanenko, G. A. Letyagin, K. Yu. Maryunina, A. S. Bogomyakov, S. Nishihara, K. Inoue, V. I. Ovcharenko, Russ. Chem. Bull., 2020, 69, 1530; DOI: https://doi.org/10.1007/s11172-020-2932-2.

    Article  CAS  Google Scholar 

  4. O. Sato, J. Tao, Yu.-Z. Zhang, Angew. Chem., Int. Ed., 2007, 46, 2152; DOI: https://doi.org/10.1002/anie.200602205.

    Article  CAS  Google Scholar 

  5. N. A. Protasenko, A. I. Poddel’sky, A. S. Bogomyakov, G. K. Fukin, V. K. Cherkasov, Inorg. Chem., 2015, 54, 6078; DOI: https://doi.org/10.1021/acs.inorgchem.5b00912.

    Article  PubMed  CAS  Google Scholar 

  6. A. A. Zolotukhin, M. P. Bubnov, A. V. Arapova, G. K. Fukin, R. V. Rumyantcev, A. S. Bogomyakov, A. V. Knyazev, V. K. Cherkasov, Inorg. Chem., 2017, 56, 14751; DOI: https://doi.org/10.1021/acs.inorgchem.7b02597.

    Article  PubMed  CAS  Google Scholar 

  7. D. A. Shultz, M. L. Kirk, J. Zhang, D. E. Stasiw, G. Wang, J. Yang, D. Habel-Rodriguez, B. W. Stein, R. D. Sommer, J. Am. Chem. Soc., 2020, 142, 4916; DOI: https://doi.org/10.1021/jacs.0c00326.

    Article  PubMed  CAS  Google Scholar 

  8. G. K. Gransbury, M.-E. Boulon, S. Petrie, R. W. Gable, R. J. Mulder, L. Sorace, R. Stranger, C. Boskovic, Inorg. Chem., 2019, 58, 4230; DOI: https://doi.org/10.1021/acs.inorgchem.8b03291.

    Article  PubMed  CAS  Google Scholar 

  9. Magnetism: Molecules to Materials IV, Eds. J. S. Miller, M. Drillon, Wiley-VCH, New York, 2002, 485 pp.; DOI: https://doi.org/10.1002/3527600698.

    Google Scholar 

  10. V. I. Minkin, Russ. Chem. Bull., 2008, 57, 687; DOI: https://doi.org/10.1007/s11172-008-0111-y.

    Article  CAS  Google Scholar 

  11. E. V. Tretyakov, V. I. Ovcharenko, Russ. Chem. Rev., 2009, 78, 971; DOI: https://doi.org/10.1070/RC2009v078n11ABEH004093.

    Article  CAS  Google Scholar 

  12. A. Dei, L. Sorace, Appl. Magn. Reson., 2010, 38, 139; DOI: https://doi.org/10.1007/s00723-010-0121-4.

    Article  CAS  Google Scholar 

  13. M. V. Fedin, S. L. Veber, E. G. Bagryanskaya, V. I. Ovcharenko, Coord. Chem. Rev., 2015, 289–290, 341; DOI: https://doi.org/10.1016/j.ccr.2014.11.015.

    Article  Google Scholar 

  14. O. Sato, Nat. Chem., 2016, 8, 644; DOI: https://doi.org/10.1038/nchem.2547.

    Article  PubMed  CAS  Google Scholar 

  15. E. Coronado, Nat. Rev. Mater., 2020, 5, 87; DOI: https://doi.org/10.1038/s41578-019-0146-8.

    Article  Google Scholar 

  16. V. I. Ovcharenko, R. Z. Sagdeev, Russ. Chem. Rev., 1999, 68, 345; DOI: https://doi.org/10.1070/RC1999v068n05ABEH000513.

    Article  CAS  Google Scholar 

  17. S. M. Aldoshin, Russ. Chem. Bull., 2008, 57, 718; DOI: https://doi.org/10.1007/s11172-008-0112-x.

    Article  CAS  Google Scholar 

  18. S. L. Veber, M. V. Fedin, K. Yu. Maryunina, A. Potapov, D. Goldfarb, E. Reijerse, W. Lubitz, R. Z. Sagdeev, V. I. Ovcharenko, E. G. Bagryanskaya, Inorg. Chem., 2011, 50, 10204; DOI: https://doi.org/10.1021/ic2011869.

    Article  PubMed  CAS  Google Scholar 

  19. I. Yu. Barskaya, E. V. Tretyakov, R. Z. Sagdeev, V. I. Ovcharenko, E. G. Bagryanskaya, K. Yu. Maryunina, T. Takui, K. Sato, M. V. Fedin, J. Am. Chem. Soc., 2014, 136, 10132; DOI: https://doi.org/10.1021/ja504774q.

    Article  PubMed  CAS  Google Scholar 

  20. M. V. Fedin, S. L. Veber, E. G. Bagryanskaya, G. V. Romanenko, V. I. Ovcharenko, Dalton Trans., 2015, 44, 18823; DOI: https://doi.org/10.1039/C5DT03441H.

    Article  PubMed  CAS  Google Scholar 

  21. S. Demir, I.-R. Jeon, J. R. Long, T. D. Harris, Coord. Chem. Rev., 2015, 289–290, 149; DOI: https://doi.org/10.1016/j.ccr.2014.10.012.

    Article  Google Scholar 

  22. I. Yu. Barskaya, S. L. Veber, S. V. Fokin, E. V. Tretyakov, E. G. Bagryanskay, V. I. Ovcharenko, M. V. Fedin, Dalton Trans., 2015, 44, 20883; DOI: https://doi.org/10.1039/C5DT03683F.

    Article  PubMed  CAS  Google Scholar 

  23. I. Yu. Barskaya, S. L. Veber, E. A. Suturina, P. S. Sherin, K. Yu. Maryunina, N. A. Artiukhova, E. V. Tretyakov, R. Z. Sagdeev, V. I. Ovcharenko, N. P. Gritsan, M. V. Fedin, Dalton Trans., 2017, 46, 13108; DOI: https://doi.org/10.1039/C7DT02719B.

    Article  PubMed  CAS  Google Scholar 

  24. X. Dong, M. Lorenc, E. V. Tretyakov, V. I. Ovcharenko, M. V. Fedin, J. Phys. Chem. Lett., 2017, 8, 5587; DOI: https://doi.org/10.1021/acs.jpclett.7b02497.

    Article  PubMed  CAS  Google Scholar 

  25. O. Drath, C. Boskovic, Coord. Chem. Rev., 2018, 375, 256; DOI: https://doi.org/10.1016/j.ccr.2017.11.025.

    Article  CAS  Google Scholar 

  26. V. V. Novikov, Yu. V. Nelyubina, Russ. Chem. Rev., 2021, 90, 1330; DOI: https://doi.org/10.1070/RCR5002.

    Article  Google Scholar 

  27. V. I. Ovcharenko, S. V. Fokin, E. Yu. Fursova, O. V. Kuznetsova, E. V. Tretyakov, G. V. Romanenko, A. S. Bogomyakov, Inorg. Chem., 2011, 50, 4307; DOI: https://doi.org/10.1021/ic1022483.

    Article  PubMed  CAS  Google Scholar 

  28. E. Yu. Fursova, O. V. Kuznetsova, E. V. Tretyakov, G. V. Romanenko, A. S. Bogomyakov, V. I. Ovcharenko, R. Z. Sagdeev, V. K. Cherkasov, M. P. Bubnov, G. A. Abakumov, Russ. Chem. Bull., 2011, 60, 809; DOI: https://doi.org/10.1007/s11r72-011-0129-4.

    Article  CAS  Google Scholar 

  29. V. I. Ovcharenko, E. V. Tretyakov, S. V. Fokin, E. Yu. Fursova, O. V. Kuznetsova, S. E. Tolstikov, G. V. Romanenko, A. S. Bogomyakov, R. Z. Sagdeev, Russ. Chem. Bull., 2011, 60, 2457; DOI: https://doi.org/10.1007/s11172-011-0381-7.

    Article  CAS  Google Scholar 

  30. E. V. Tretyakov, S. V. Fokin, E. Yu. Fursova, O. V. Kuznetsova, G. V. Romanenko, R. Z. Sagdeev, V. I. Ovcharenko, Russ. Chem. Bull., 2013, 62, 1803; DOI: https://doi.org/10.1007/s11172-013-0260-5.

    Article  CAS  Google Scholar 

  31. N. A. Artiukhova, K. Yu. Maryunina, S. V. Fokin, E. V. Tretyakov, G. V. Romanenko, A. V. Polushkin, A. S. Bogomyakov, R. Z. Sagdeev, V. I. Ovcharenko, Russ. Chem. Bull., 2013, 62, 2132; DOI: https://doi.org/10.1007/s11172-013-0312-x.

    Article  CAS  Google Scholar 

  32. S. E. Tolstikov, N. A. Artiukhova, G. V. Romanenko, A. S. Bogomyakov, E. M. Zueva, I. Yu. Barskaya, M. V. Fedin, K. Yu. Maryunina, E. V. Tretyakov, R. Z. Sagdeev, V. I. Ovcharenko, Polyhedron, 2015, 100, 132; DOI: https://doi.org/10.1016/j.poly.2015.07.029.

    Article  CAS  Google Scholar 

  33. O. V. Kuznetsova, E. Yu. Fursova, G. V. Romanenko, A. S. Bogomyakov, R. Z. Sagdeev, V. I. Ovcharenko, Russ. Chem. Bull., 2016, 67, 1167; DOI: https://doi.org/10.1007/s11172-016-1432-x.

    Article  Google Scholar 

  34. N. A. Artiukhova, G. V. Romanenko, G. A. Letyagin, A. S. Bogomyakov, S. E. Tolstikov, V. I. Ovcharenko, Russ. Chem. Bull., 2019, 68, 732; DOI: https://doi.org/10.1007/s11172-019-2480-9.

    Article  CAS  Google Scholar 

  35. V. I. Minkin, A. A. Starikova, M. G. Chegerev, A. G. Starikov, Russ. J. Coord. Chem., 2020, 46, 371; DOI: https://doi.org/10.1134/S1070328420060068.

    Article  CAS  Google Scholar 

  36. G. V. Romanenko, O. V. Kuznetsova, E. V. Tretyakov, V. I. Ovcharenko, Russ. Chem. Bull., 2021, 70, 864; DOI: https://doi.org/10.1007/s11172-021-3160-0.

    Article  CAS  Google Scholar 

  37. A. I. Poddel’sky, V. K. Cherkasov, G. A. Abakumov, Coord. Chem. Rev., 2009, 253, 291; DOI: https://doi.org/10.1016/j.ccr.2008.02.004.

    Article  Google Scholar 

  38. T. Tezgerevska, K. G. Alley, C. Boskovic, Coord. Chem. Rev., 2014, 268, 23; DOI: https://doi.org/10.1016/j.ccr.2014.01.014.

    Article  CAS  Google Scholar 

  39. A. A. Starikova, R. M. Minyaev, V. I. Minkin, Russ. Chem. Bull., 2014, 63, 812; DOI: https://doi.org/10.1007/s11172-014-0514-x.

    Article  CAS  Google Scholar 

  40. N. A. Protasenko, A. I. Poddel’sky, A. S. Bogomyakov, N. V. Somov, G. A. Abakumov, V. K. Cherkasov, Polyhedron, 2013, 49, 239; DOI: https://doi.org/10.1016/j.poly.2012.10.016.

    Article  CAS  Google Scholar 

  41. E. V. Bellan, A. I. Poddel’sky, N. A. Protasenko, A. S. Bogomyakov, G. K. Fukin, V. K. Cherkasov, G. A. Abakumov, ChemistrySelect, 2016, 1, 2988; DOI: https://doi.org/10.1002/slct.201600506.

    Article  CAS  Google Scholar 

  42. N. A. Protasenko, A. I. Poddel’sky, A. S. Bogomyakov, A. G. Starikov, I. V. Smolyaninov, N. T. Berberova, G. K. Fukin, V. K. Cherkasov, Inorg. Chim. Acta, 2019, 489, 1; DOI: https://doi.org/10.1016/j.ica.2019.02.002.

    Article  CAS  Google Scholar 

  43. A. A. Starikova, V. I. Minkin, Russ. Chem. Rev., 2018, 87, 1049; DOI: https://doi.org/10.1070/RCR4837.

    Article  CAS  Google Scholar 

  44. A. V. Piskunov, K. I. Pashanova, I. V. Ershova, A. S. Bogomyakov, I. V. Smolyaninov, A. G. Starikov, S. P. Kubrin, G. K. Fukin, J. Mol. Struct., 2018, 1165, 51; DOI: https://doi.org/10.1016/j.molstruc.2018.03.091.

    Article  CAS  Google Scholar 

  45. A. V. Piskunov, K. I. Pashanova, A. S. Bogomyakov, I. V. Smolyaninov, A. G. Starikov, G. K. Fukin, Dalton Trans., 2018, 47, 15049; DOI: https://doi.org/10.1039/C8DT02733A.

    Article  PubMed  CAS  Google Scholar 

  46. N. A. Protasenko, A. I. Poddel’sky, Theor. Exp. Chem., 2020, 56, 338; DOI: https://doi.org/10.1007/s11237-020-09663-1.

    Article  Google Scholar 

  47. A. V. Piskunov, K. I. Pashanova, I. V. Ershova, A. S. Bogomyakov, A. G. Starikov, G. K. Fukin, Russ. Chem. Bull., 2019, 68, 757; DOI: https://doi.org/10.1007/s11172-019-2483-6.

    Article  CAS  Google Scholar 

  48. I. V. Ershova, I. V. Smolyaninov, A. S. Bogomyakov, M. V. Fedin, A. G. Starikov, A. V. Cherkasov, G. K. Fukin, A. V. Piskunov, Dalton Trans., 2019, 48, 10723; DOI: https://doi.org/10.1039/C9DT01424A.

    Article  PubMed  CAS  Google Scholar 

  49. M. Bubnov, I. Teplova, A. Cherkasova, E. Baranov, G. Fukin, G. Romanenko, A. Bogomyakov, A. Starikov, V. Cherkasov, G. Abakumov, Polyhedron, 2019, 158, 262; DOI: https://doi.org/10.1016/j.poly.2018.10.071.

    Article  CAS  Google Scholar 

  50. I. V. Ershova, A. V. Piskunov, V. K. Cherkasov, Russ. Chem. Rev., 2020, 89, 1157; DOI: https://doi.org/10.1070/RCR4957.

    Article  CAS  Google Scholar 

  51. A. G. Starikov, M. G. Chegerev, A. A. Starikova, V. I. Minkin, Russ. Chem. Bull., 2021, 70, 309; DOI: https://doi.org/10.1007/s11172-021-3086-6.

    Article  CAS  Google Scholar 

  52. M. L. Kirk, D. A. Shultz, Coord. Chem. Rev., 2013, 257, 218; DOI: https://doi.org/10.1016/j.ccr.2012.07.007.

    Article  CAS  Google Scholar 

  53. M. L. Kirk, D. A. Shultz, D. E. Stasiw, G. F. Lewis, G. Wang, C. L. Brannen, R. D. Sommer, P. D. Boyle, J. Am. Chem. Soc., 2013, 135, 17144; DOI: https://doi.org/10.1021/ja4081887.

    Article  PubMed  CAS  Google Scholar 

  54. M. L. Kirk, D. A. Shultz, J. Zhang, R. Dangi, L. Ingersol, J. Yang, N. S. Finney, R. D. Sommer, L. Wojtas, Chem. Sci., 2017, 8, 5408; DOI: https://doi.org/10.1039/C7SC00073A.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. M. Bubnov, A. Cherkasova, I. Teplova, E. Kopylova, G. Fukin, M. Samsonov, A. Bogomyakov, S. Fokin, G. Romanenko, V. Cherkasov, V. Ovcharenko, Polyhedron, 2016, 119, 317; DOI: https://doi.org/10.1016/j.poly.2016.09.020.

    Article  CAS  Google Scholar 

  56. M. P. Bubnov, I. A. Teplova, E. A. Kopylova, K. A. Kozhanov, A. S. Bogomyakov, M. V. Petrova, V. A. Morozov, V. I. Ovcharenko, V. K. Cherkasov, Inorg. Chem., 2017, 56, 2426; DOI: https://doi.org/10.1021/acs.inorgchem.6b02411.

    Article  PubMed  CAS  Google Scholar 

  57. T. Bally, Nat. Chem., 2010, 2, 165; DOI: https://doi.org/10.1038/nchem.564.

    Article  PubMed  CAS  Google Scholar 

  58. Spin-Crossover Materials: Properties and Applications, Ed. M. A. Halcrow, John Wiley & Sons, Chichester, 2013, 564 pp.

    Google Scholar 

  59. M. A. Halcrow, Polyhedron, 2007, 26, 3523; DOI: https://doi.org/10.1016/j.poly.2007.03.033.

    Article  CAS  Google Scholar 

  60. D. J. Harding, P. Harding, W. Phonsri, Coord. Chem. Rev., 2016, 313, 38; DOI: https://doi.org/10.1016/j.ccr.2016.01.006.

    Article  CAS  Google Scholar 

  61. A. V. Vologzhanina, A. S. Belov, V. V. Novikov, A. V. Dolganov, G. V. Romanenko, V. I. Ovcharenko, A. A. Korlyukov, M. I. Buzin, Ya. Z. Voloshin, Inorg. Chem., 2015, 54, 5827; DOI: https://doi.org/10.1021/acs.inorgchem.5b00546.

    Article  PubMed  CAS  Google Scholar 

  62. R. A. Taylor, A. J. Lough, M. T. Lemaire, J. Mater. Chem. C, 2016, 4, 455; DOI: https://doi.org/10.1039/C5TC03137K.

    Article  CAS  Google Scholar 

  63. A. G. Starikov, A. A. Starikova, M. G. Chegerev, Russ. J. Coord. Chem., 2019, 45, 105; DOI: https://doi.org/10.1134/S1070328419020088.

    Article  CAS  Google Scholar 

  64. M. Fedin, V. Ovcharenko, R. Sagdeev, E. Reijerse, W. Lubitz, E. Bagryanskaya, Angew. Chem., Int. Ed., 2008, 47, 6897; DOI: https://doi.org/10.1002/anie.200801400.

    Article  CAS  Google Scholar 

  65. M. V. Fedin, S. L. Veber, R. Z. Sagdeev, V. I. Ovcharenko, E. G. Bagryanskaya, Russ. Chem. Bull., 2010, 59, 1065; DOI: https://doi.org/10.1007/s11172-010-0209-x.

    Article  CAS  Google Scholar 

  66. V. I. Minkin, A. G. Starikov, Russ. Chem. Bull., 2015, 64, 475; DOI: https://doi.org/10.1007/s11172-015-0891-9.

    Article  CAS  Google Scholar 

  67. K. Yu. Maryunina, X. Zhang, S. Nishihara, K. Inoue, V. A. Morozov, G. V. Romanenko, V. I. Ovcharenko, J. Mater. Chem. C, 2015, 3, 7788; DOI: https://doi.org/10.1039/C5TC01005E.

    Article  CAS  Google Scholar 

  68. V. Ovcharenko, S. Fokin, E. Chubakova, G. Romanenko, A. Bogomyakov, Z. Dobrokhotova, N. Lukzen, V. Morozov, M. Petrova, M. Petrova, E. Zueva, I. Rozentsveig, E. Rudyakova, G. Levkovskaya, R. Sagdeev, Inorg. Chem., 2016, 55, 5853; DOI: https://doi.org/10.1021/acs.inorgchem.6b00140.

    Article  PubMed  CAS  Google Scholar 

  69. N. A. Artiukhova, G. V. Romanenko, A. S. Bogomyakov, I. Yu. Barskaya, S. L. Veber, M. V. Fedin, K. Yu. Maryunina, K. Inoue, V. I. Ovcharenko, J. Mater. Chem. C, 2016, 4, 11157; DOI: https://doi.org/10.1039/C6TC03216H.

    Article  CAS  Google Scholar 

  70. K. Maryunina, K. Yamaguchi, S. Nishihara, K. Inoue, G. Letyagin, G. Romanenko, I. Barskaya, S. Veber, M. Fedin, A. Bogomyakov, M. Petrova, V. Morozov, V. Ovcharenko, Cryst. Growth Des., 2020, 20, 2796; DOI: https://doi.org/10.1021/acs.cgd.0c00240.

    Article  CAS  Google Scholar 

  71. C. R. Tichnell, D. A. Shultz, C. V. Popescu, I. Sokirniy, P. D. Boyle, Inorg. Chem., 2015, 54, 4466; DOI: https://doi.org/10.1021/acs.inorgchem.5b00298.

    Article  PubMed  CAS  Google Scholar 

  72. A. J. Simaan, M.-L. Boillot, R. Carrasco, J. Cano, J.-J. Girerd, T. A. Mattioli, J. Ensling, H. Spiering, P. Gutlich, Chem.—Eur. J., 2005, 11, 1779; DOI: https://doi.org/10.1002/chem.200400484.

    Article  PubMed  CAS  Google Scholar 

  73. S. Floquet, A. J. Simaan, E. Rivière, M. Nierlich, P. Thuéry, J. Ensling, P. Gütlich, J.-J. Girerd, M.-L. Boillot, Dalton Trans., 2005, 1734; DOI: https://doi.org/10.1039/B418294D.

  74. A. Tissot, H. J. Shepherd, L. Toupet, E. Collet, J. Sainton, G. Molnár, P. Guionneau, M.-L. Boillot, Eur. J. Inorg. Chem., 2013, 1001; DOI: https://doi.org/10.1002/ejic.201201059.

  75. Stable Radicals: Fundamental and Applied Aspects of Odd-electron Compounds, Ed. R. Hicks, Wiley, Chichester, 2011, 588 pp.

    Google Scholar 

  76. G. N. Lipunova, T. G. Fedorchenko, A. N. Tsmokalyuk, O. N. Chupakhin, Russ. Chem. Bull., 2020, 69, 1203; DOI: https://doi.org/10.1007/s11172-020-2892-6.

    Article  CAS  Google Scholar 

  77. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 (Revision A.03), Gaussian, Inc., Wallingford (CT), 2016.

    Google Scholar 

  78. J. M. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett., 2003, 91, 146401; DOI: https://doi.org/10.1103/PhysRevLett.91.146401.

    Article  PubMed  Google Scholar 

  79. V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, J. Chem. Phys., 2003, 119, 12129; DOI: https://doi.org/10.1063/1.1626543.

    Article  CAS  Google Scholar 

  80. T. Tezgerevska, E. Rousset, R. W. Gable, G. N. L. Jameson, E. Carolina Sañudo, A. Starikova, C. Boskovic, Dalton Trans., 2019, 48, 11674; DOI: https://doi.org/10.1039/C9DT02372K.

    Article  PubMed  CAS  Google Scholar 

  81. G. K. Gransbury, B. N. Livesay, J. T. Janetzki, M. A. Hay, R. W. Gable, M. P. Shores, A. Starikova, C. Boskovic, J. Am. Chem. Soc., 2020, 142, 10692; DOI: https://doi.org/10.1021/jacs.0c01073.

    Article  PubMed  CAS  Google Scholar 

  82. A. A. Starikova, M. G. Chegerev, A. G. Starikov, Russ. J. Coord. Chem., 2020, 46, 193; DOI: https://doi.org/10.1134/S1070328420030070.

    Article  CAS  Google Scholar 

  83. V. I. Minkin, A. G. Starikov, A. A. Starikova, Pure Appl. Chem., 2018, 90, 811; DOI: https://doi.org/10.1515/pac-2017-0803.

    Article  CAS  Google Scholar 

  84. L. Noodleman, J. Chem. Phys., 1981, 74, 5737; DOI: https://doi.org/10.1063/1.440939.

    Article  CAS  Google Scholar 

  85. M. Shoji, K. Koizumi, Y. Kitagawa, T. Kawakami, S. Yamanaka, M. Okumura, K. Yamaguchi, Chem. Phys. Lett., 2006, 432, 343; DOI: https://doi.org/10.1016/j.cplett.2006.10.023.

    Article  CAS  Google Scholar 

  86. Chemcraft, version 1.7, 2013; http://www.chemcraftprog.com.

  87. S. V. Fokin, E. Yu. Fursova, G. A. Letyagin, A. S. Bogomyakov, V. A. Morozov, G. V. Romanenko, V. I. Ovcharenko, J. Struct. Chem., 2020, 61, 541; DOI: https://doi.org/10.1134/S002247662004006X.

    Article  CAS  Google Scholar 

  88. A. A. Starikova, M. G. Chegerev, A. G. Starikov, Chem. Phys. Lett., 2021, 762, 138128; DOI: https://doi.org/10.1016/j.cplett.2020.138128.

    Article  CAS  Google Scholar 

  89. V. I. Minkin, A. A. Starikova, M. G. Chegerev, A. G. Starikov, Russ. Chem. Bull., 2021, 70, 811; DOI: https://doi.org/10.1007/s11172-021-3154-y.

    Article  CAS  Google Scholar 

  90. A. A. Starikova, M. G. Chegerev, A. G. Starikov, Russ. Chem. Bull., 2020, 69, 203; DOI: https://doi.org/10.1007/s11172-020-2747-1.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment in the field of scientific activity, Project No. 0852-2020-0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Starikova.

Additional information

Dedicated to Academician of the Russian Academy of Sciences R. Z. Sagdeev on the occasion of his 80th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2315–2323, December, 2021.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minkin, V.I., Starikov, A.G., Chegerev, M.G. et al. Heterospin iron complexes with dioxolenes functionalized with stable radicals: quantum chemical study. Russ Chem Bull 70, 2315–2323 (2021). https://doi.org/10.1007/s11172-021-3347-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3347-4

Key words

Navigation