Skip to main content
Log in

Methods for the synthesis of functionalized alkynylcyclopropanes

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Data on methods for the synthesis of various classes of functionalized alkynylcyclopropanes (FACPs) reported in the last two decades are systematized. Synthetic routes to FACPs based on cyclopropanation of unsaturated compounds with various carbenes, carbenoids, and ylides are considered separately. Methods for introducing functional groups into the three-membered ring of alkynylcyclopropanes via metalation and elimination—addition processes as well as other synthetic routes to functionalized cyclopropanes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. G. Kulinkovich, Cyclopropanes in Organic Synthesis, Wiley, Hoboken, New Jersey, 2015.

    Book  Google Scholar 

  2. H. Pellissier, A. Lattanzi, R. Dalpozzo, Asymmetric Synthesis of Three-membered Rings, Wiley, Weinheim, 2017.

    Book  Google Scholar 

  3. O. M. Nefedov, A. I. Ioffe, L. G. Menchikov, Khimiya karbenov [Chemistry of Carbenes], Khimiya, Moscow, 1990, 304 pp. (in Russian).

    Google Scholar 

  4. J. Salaün, in Small Ring Compounds in Organic Synthesis VI, Vol. 207, Ed. A. de Meijere, Springer, Berlin, Heidelberg, 2000, p. 1.

  5. Z. Rappoport, The Chemistry of the Cyclopropyl Group, Vol. 1, Wiley, Chichester, New York, Bisbane, Toronto, Singapore, 1987.

    Google Scholar 

  6. A. de Meijere, Small Ring Compounds in Organic Synthesis VI, Springer, Berlin, Heidelberg, 2000.

    Book  Google Scholar 

  7. Y.-Y. Fan, X.-H. Gao, J.-M. Yue, Sci. China Chem., 2016, 59, 1126; DOI: https://doi.org/10.1007/s11426-016-0233-1.

    Article  CAS  Google Scholar 

  8. K. Peter, K. Andras, H. Laszlo, K. Gyorgy, S. Csaba, Curr. Org. Chem., 2014, 18, 2037; DOI: https://doi.org/10.2174/1385272819666140721190257.

    Article  Google Scholar 

  9. G. Z. Raskil’dina, U. S. Kuzmina, S. S. Dzhumaev, Y. G. Borisova, D. V. Ishmetova, Y. V. Vakhitova, S. S. Zlotskii, Russ. Chem. Bull., 2021, 70, 475; DOI: https://doi.org/10.1007/s11172-021-3111-9.

    Article  Google Scholar 

  10. M. Miao, J. Cao, J. Zhang, X. Huang, L. Wu, Org. Lett., 2012, 14, 2718; DOI: https://doi.org/10.1021/ol300927n.

    Article  CAS  PubMed  Google Scholar 

  11. G. Li, X. Huang, L. Zhang, J. Am. Chem. Soc., 2008, 130, 6944; DOI: https://doi.org/10.1021/ja802294t.

    Article  CAS  PubMed  Google Scholar 

  12. O. B. Bondarenko, A. I. Komarov, G. L. Karetnikov, S. N. Nikolaeva, N. V. Zyk, Russ. Chem. Bull., 2019, 68, 1200; DOI: https://doi.org/10.1007/s11172-019-2540-1.

    Article  CAS  Google Scholar 

  13. C. E. Tedford, J. G. Phillips, R. Gregory, G. P. Pawlowski, L. Fadnis, M. A. Khan, S. M. Ali, M. K. Handley, S. L. Yates, J. Pharmacol. Exp. Ther., 1999, 289, 1160; DOI.

    CAS  PubMed  Google Scholar 

  14. J. W. Corbett, S. S. Ko, J. D. Rodgers, L. A. Gearhart, N. A. Magnus, L. T. Bacheler, S. Diamond, S. Jeffrey, R. M. Klabe, B. C. Cordova, S. Garber, K. Logue, G. L. Trainor, P. S. Anderson, S. K. Erickson-Viitanen, J. Med. Chem., 2000, 43, 2019; DOI: https://doi.org/10.1021/jm990580e.

    Article  CAS  PubMed  Google Scholar 

  15. A. Zampella, M. V. D’Auria, L. Minale, C. Debitus, C. Roussakis, J. Am. Chem. Soc., 1996, 118, 11085; DOI: https://doi.org/10.1021/ja9621004.

    Article  CAS  Google Scholar 

  16. J. Xu, L. Wu, X. Huang, J. Org. Chem., 2011, 76, 5598; DOI: https://doi.org/10.1021/jo2005439.

    Article  CAS  PubMed  Google Scholar 

  17. J. Zhao, K. J. Szabó, Angew. Chem., Int. Ed., 2016, 55, 1502; DOI: https://doi.org/10.1002/anie.201510132.

    Article  CAS  Google Scholar 

  18. Y. An, J. Liu, H. Y. Jiang, Y. H. Wang, Z. L. Chen, Tetrahedron Lett., 2008, 49, 3124; DOI: https://doi.org/10.1016/j.tetlet.2008.03.041.

    Article  CAS  Google Scholar 

  19. K. N. Shavrin, V. D. Gvozdev, S. V. Yurov, O. M. Nefedov, Mendeleev Commun., 2008, 18, 16; DOI: https://doi.org/10.1016/j.mencom.2008.01.007.

    Article  CAS  Google Scholar 

  20. G.-Q. Chen, M. Shi, Chem. Commun., 2013, 49, 698; DOI: https://doi.org/10.1039/C2CC37587G.

    Article  CAS  Google Scholar 

  21. G. Q. Chen, W. Fang, Y. Wei, X. Y. Tang, M. Shi, Chem. Sci., 2016, 7, 4318; DOI: https://doi.org/10.1039/c6sc00058d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. G.-Q. Chen, X.-Y. Tang, M. Shi, Synlett, 2014, 25, 2311; DOI: https://doi.org/10.1055/s-0034-1378633.

    Article  CAS  Google Scholar 

  23. J. P. Markham, S. T. Staben, F. D. Toste, J. Am. Chem. Soc., 2005, 127, 9708; DOI: https://doi.org/10.1021/ja052831g.

    Article  CAS  PubMed  Google Scholar 

  24. N. Iwasawa, T. Matsuo, M. Iwamoto, T. Ikeno, J. Am. Chem. Soc., 1998, 120, 3903; DOI: https://doi.org/10.1021/ja9734004.

    Article  CAS  Google Scholar 

  25. H. Chen, J. Zhang, D. Z. Wang, Org. Lett., 2015, 17, 2098; DOI: https://doi.org/10.1021/acs.orglett.5b00671.

    Article  CAS  PubMed  Google Scholar 

  26. G. Zhang, X. Huang, G. Li, L. Zhang, J. Am. Chem. Soc., 2008, 130, 1814; DOI: https://doi.org/10.1021/ja077948e.

    Article  CAS  PubMed  Google Scholar 

  27. G.-Q. Chen, X.-N. Zhang, Y. Wei, X.-Y. Tang, M. Shi, Angew. Chem., Int. Ed., 2014, 53, 8492; DOI: https://doi.org/10.1002/anie.201405215.

    Article  CAS  Google Scholar 

  28. J. Zhang, H.-G. Schmalz, Angew. Chem., Int. Ed., 2006, 45, 6704; DOI: https://doi.org/10.1002/anie.200601252.

    Article  CAS  Google Scholar 

  29. Y. Zhang, Z. Chen, Y. Xiao, J. Zhang, Chem.—Eur. J., 2009, 15, 5208; DOI: https://doi.org/10.1002/chem.200900413.

    Article  CAS  PubMed  Google Scholar 

  30. M. Zhu, W.-J. Fu, C. Xu, G.-L. Zou, Z.-Q. Wang, B.-M. Ji, Eur. J. Org. Chem., 2012, 2012, 4609; DOI: https://doi.org/10.1002/ejoc.201200601.

    Article  CAS  Google Scholar 

  31. X. Huang, W. Fu, M. Miao, Tetrahedron Lett., 2008, 49, 2359; DOI: https://doi.org/10.1016/j.tetlet.2008.02.081.

    Article  CAS  Google Scholar 

  32. A. Urbanaitė, I. Čikotienė, Eur. J. Org. Chem., 2016, 2016, 5294; DOI: https://doi.org/10.1002/ejoc.201600985.

    Article  Google Scholar 

  33. J. Zhang, Y. Zhang, Synlett, 2012, 23, 1389; DOI: https://doi.org/10.1055/s-0031-1290978.

    Article  CAS  Google Scholar 

  34. Y. Bai, J. Fang, J. Ren, Z. Wang, Chem.—Eur. J., 2009, 15, 8975; DOI: https://doi.org/10.1002/chem.200901133.

    Article  CAS  PubMed  Google Scholar 

  35. Y. Zhang, F. Liu, J. Zhang, Chem.—Eur. J., 2010, 16, 6146; DOI: https://doi.org/10.1002/chem.200903342.

    Article  CAS  PubMed  Google Scholar 

  36. Y. Zhang, J. Zhang, Chem. Commun., 2012, 48, 4710; DOI: https://doi.org/10.1039/C2CC30309D.

    Article  CAS  Google Scholar 

  37. J. Zhang, Y. Xiao, Y. Zhang, Synthesis, 2016, 48, 512; DOI: https://doi.org/10.1055/s-0035-1561276.

    Article  CAS  Google Scholar 

  38. J. M. Fernández-García, P. García-García, M. A. Fernández-Rodríguez, A. Pérez-Anes, E. Aguilar, Chem. Commun., 2013, 49, 11185; DOI: https://doi.org/10.1039/C3CC46238B.

    Article  Google Scholar 

  39. J. M. Fernández-García, H. A. Garro, L. Fernández-García, P. García-García, M. A. Fernández-Rodríguez, I. Merino, E. Aguilar, Adv. Synth. Catal., 2017, 359, 3035; DOI: https://doi.org/10.1002/adsc.201700264.

    Article  Google Scholar 

  40. R.-R. Liu, S.-C. Ye, C.-J. Lu, B. Xiang, J. Gao, Y.-X. Jia, Org. Biomol. Chem., 2015, 13, 4855; DOI: https://doi.org/10.1039/C5OB00523J.

    Article  CAS  PubMed  Google Scholar 

  41. K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, Russ. Chem. Bull., 2010, 59, 1451; DOI: https://doi.org/10.1007/s11172-010-0261-6.

    Article  CAS  Google Scholar 

  42. K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, Mendeleev Commun., 2008, 18, 300; DOI: https://doi.org/10.1016/j.mencom.2008.11.003.

    Article  CAS  Google Scholar 

  43. A. de Meijere, T.-J. Schulz, R. R. Kostikov, F. Graupner, T. Murr, T. Bielfeldt, Synthesis, 1991, 1991, 547; DOI: https://doi.org/10.1055/s-1991-26514.

    Article  Google Scholar 

  44. Yu. V. Tomilov, G. P. Okonnishnikova, E. V. Shulishov, K. N. Shavrin, O. M. Nefedov, Russ. Chem. Bull., 1998, 47, 2208; DOI: https://doi.org/10.1007/BF02494283.

    Article  CAS  Google Scholar 

  45. R. G. Bergman, V. J. Rajadhyaksha, J. Am. Chem. Soc., 1970, 92, 2163; DOI: https://doi.org/10.1021/ja00710a076.

    Article  CAS  Google Scholar 

  46. M. Franck-Neumann, P. Geoffroy, Tetrahedron Lett., 1983, 24, 1779; DOI: https://doi.org/10.1016/S0040-4039(00)81768-2.

    Article  CAS  Google Scholar 

  47. K. N. Shavrin, I. V. Krylova, I. B. Shvedova, G. P. Okonnishnikova, I. E. Dolgy, O. M. Nefedov, J. Chem. Soc, Perkin Trans. 2, 1991, 1875; DOI: https://doi.org/10.1039/P29910001875.

  48. K. N. Shavrin, I. B. Shvedova, O. M. Nefedov, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1991, 40, 2235; DOI: https://doi.org/10.1007/bf00961044.

    Article  Google Scholar 

  49. K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, Mendeleev Commun., 1997, 7, 144; DOI: https://doi.org/10.1007/s11172-010-0261-6.

    Article  Google Scholar 

  50. K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, Russ. Chem. Bull., 2002, 51, 1237; DOI: https://doi.org/10.1023/A:1020952513679.

    Article  CAS  Google Scholar 

  51. V. D. Gvozdev, K. N. Shavrin, E. G. Baskir, M. P. Egorov, O. M. Nefedov, Russ. Chem. Bull., 2021, 70, 1575; DOI: https://doi.org/10.1007/s11172-021-3254-8.

    Article  CAS  Google Scholar 

  52. K. N. Shavrin, V. D. Gvozdev, I. Y. Pinus, I. P. Dotsenko, O. M. Nefedov, Russ. Chem. Bull., 2004, 53, 2546; DOI: https://doi.org/10.1007/s11172-005-0152-4.

    Article  CAS  Google Scholar 

  53. K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, Mendeleev Commun., 2003, 13, 52; DOI: https://doi.org/10.1070/MC2003v013n02ABEH001714.

    Article  Google Scholar 

  54. V. D. Gvozdev, K. N. Shavrin, E. G. Baskir, O. M. Nefedov, M. P. Egorov, Mendeleev Commun., 2019, 29, 140; DOI: https://doi.org/10.1016/j.mencom.2019.03.006.

    Article  CAS  Google Scholar 

  55. E. G. Baskir, V. D. Gvozdev, K. N. Shavrin, M. P. Egorov, O. M. Nefedov, J. Phys. Chem. A, 2019, 123, 9175; DOI: https://doi.org/10.1021/acs.jpca.9b06798.

    Article  CAS  PubMed  Google Scholar 

  56. K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, Mendeleev Commun., 2002, 12, 224; DOI: https://doi.org/10.1070/MC2002v012n06ABEH001703.

    Article  Google Scholar 

  57. J. Barluenga, M. A. Fernández-Rodríguez, P. García-García, E. Aguilar, I. Merino, Chem.—Eur. J., 2006, 12, 303; DOI: https://doi.org/10.1002/chem.200500918.

    Article  CAS  Google Scholar 

  58. J. Barluenga, S. Martínez, A. L. Suárez-Sobrino, M. Tomás, J. Am. Chem. Soc., 2002, 124, 5948; DOI: https://doi.org/10.1021/ja0260667.

    Article  CAS  PubMed  Google Scholar 

  59. H. M. L. Davies, T. A. Boebel, Tetrahedron Lett., 2000, 41, 8189; DOI: https://doi.org/10.1016/S0040-4039(00)01453-2.

    Article  CAS  Google Scholar 

  60. H. M. L. Davies, P. R. Bruzinski, D. H. Lake, N. Kong, M. J. Fall, J. Am. Chem. Soc., 1996, 118, 6897; DOI: https://doi.org/10.1021/ja9604931.

    Article  CAS  Google Scholar 

  61. M.-I. Picher, B. Plietker, Org. Lett., 2020, 22, 340; DOI: https://doi.org/10.1021/acs.orglett.9b04521.

    Article  CAS  PubMed  Google Scholar 

  62. H. Suematsu, S. Kanchiku, T. Uchida, T. Katsuki, J. Am. Chem. Soc., 2008, 130, 10327; DOI: https://doi.org/10.1021/ja802561t.

    Article  CAS  PubMed  Google Scholar 

  63. J. F. Briones, H. M. L. Davies, Org. Lett., 2011, 13, 3984; DOI: https://doi.org/10.1021/ol201503j.

    Article  CAS  PubMed  Google Scholar 

  64. Y. Li, D. Shi, X. He, Y. Wang, Y. Tang, J. Zhang, S. Xu, J. Org. Chem., 2019, 84, 1588; DOI: https://doi.org/10.1021/acs.joc.8b02661.

    Article  CAS  PubMed  Google Scholar 

  65. S. Haubenreisser, P. Hensenne, S. Schröder, M. Niggemann, Org. Lett., 2013, 15, 2262; DOI: https://doi.org/10.1021/ol400809n.

    Article  CAS  PubMed  Google Scholar 

  66. J. E. C. Tejeda, B. K. Landschoot, M. A. Kerr, Org. Lett., 2016, 18, 2142; DOI: https://doi.org/10.1021/acs.orglett.6b00768.

    Article  CAS  PubMed  Google Scholar 

  67. J. Zhang, S. Xing, J. Ren, S. Jiang, Z. Wang, Org. Lett., 2015, 17, 218; DOI: https://doi.org/10.1021/ol503285u.

    Article  CAS  PubMed  Google Scholar 

  68. J. E. Curiel Tejeda, L. C. Irwin, M. A. Kerr, Org. Lett., 2016, 18, 4738; DOI: https://doi.org/10.1021/acs.orglett.6b02409.

    Article  CAS  PubMed  Google Scholar 

  69. J. Nicholas, C. Hood, D. Lloyd, W. A. MacDonald, T. Maurice Shepherd, Tetrahedron, 1982, 38, 3355; DOI: https://doi.org/10.1016/0040-4020(82)80118-X.

    Article  Google Scholar 

  70. S. R. Goudreau, D. Marcoux, A. B. Charette, J. Org. Chem., 2009, 74, 470; DOI: https://doi.org/10.1021/jo802208q.

    Article  CAS  PubMed  Google Scholar 

  71. P. Cérat, P. J. Gritsch, S. R. Goudreau, A. B. Charette, Org. Lett., 2010, 12, 564; DOI: https://doi.org/10.1021/ol902766f.

    Article  PubMed  Google Scholar 

  72. H. E. Simmons, R. D. Smith, J. Am. Chem. Soc., 1959, 81, 4256; DOI: https://doi.org/10.1021/ja01525a036.

    Article  CAS  Google Scholar 

  73. H. E. Simmons, R. D. Smith, J. Am. Chem. Soc., 1958, 80, 5323; DOI: https://doi.org/10.1021/ja01552a080.

    Article  CAS  Google Scholar 

  74. X.-M. Zhang, Y.-Q. Tu, Y.-J. Jiang, Y.-Q. Zhang, C.-A. Fan, F.-M. Zhang, Chem. Commun., 2009, 4726; DOI: https://doi.org/10.1039/B909181E.

  75. P.-F. Li, C.-B. Yi, J. Qu, Org. Biomol. Chem., 2015, 13, 5012; DOI: https://doi.org/10.1039/C5OB00305A.

    Article  CAS  PubMed  Google Scholar 

  76. S. Labsch, S. Ye, A. Adler, J.-M. Neudörfl, H.-G. Schmalz, Tetrahedron: Asymmetry, 2010, 21, 1745; DOI: https://doi.org/10.1016/j.tetasy.2010.05.019.

    Article  CAS  Google Scholar 

  77. H. Du, J. Long, Y. Shi, Org. Lett., 2006, 8, 2827; DOI: https://doi.org/10.1021/ol0609659.

    Article  CAS  PubMed  Google Scholar 

  78. L. G. Menchikov, E. V. Shulishov, Y. V. Tomilov, Russ. Chem. Rev., 2021, 90, 199; DOI: https://doi.org/10.1070/RCR4982.

    Article  CAS  Google Scholar 

  79. K. Ohe, T. Yokoi, K. Miki, F. Nishino, S. Uemura, J. Am. Chem. Soc., 2002, 124, 526; DOI: https://doi.org/10.1021/ja017037j.

    Article  CAS  PubMed  Google Scholar 

  80. E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc., 1965, 87, 1353; DOI: https://doi.org/10.1021/ja01084a034.

    Article  CAS  Google Scholar 

  81. E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc., 1962, 84, 867; DOI: https://doi.org/10.1021/ja00864a040.

    Article  CAS  Google Scholar 

  82. Yu. V. Tomilov, L. G. Menchikov, R. A. Novikov, O. A. Ivanova, I. V. Trushkov, Russ. Chem. Rev., 2018, 87, 201; DOI: https://doi.org/10.1070/rcr4787.

    Article  CAS  Google Scholar 

  83. Y. Bai, W. Tao, J. Ren, Z. Wang, Angew. Chem., Int. Ed., 2012, 51, 4112; DOI: https://doi.org/10.1002/anie.201200450.

    Article  CAS  Google Scholar 

  84. C. Zhang, M. Y. Xu, J. Ren, Z. W. Wang, Eur. J. Org. Chem., 2016, 2016, 2467; DOI: https://doi.org/10.1002/ejoc.201600233.

    Article  CAS  Google Scholar 

  85. K. Li, J. Hu, H. Liu, X. Tong, Chem. Commun., 2012, 48, 2900; DOI: https://doi.org/10.1039/C2CC30242J.

    Article  CAS  Google Scholar 

  86. S. M. Wilkerson-Hill, D. Yu, P. P. Painter, E. L. Fisher, D. J. Tantillo, R. Sarpong, J. E. Hein, J. Am. Chem. Soc., 2017, 139, 10569; DOI: https://doi.org/10.1021/jacs.7b06007.

    Article  CAS  PubMed  Google Scholar 

  87. A. Bartoli, G. Chouraqui, J.-L. Parrain, Org. Lett., 2012, 14, 122; DOI: https://doi.org/10.1021/ol2029146.

    Article  CAS  PubMed  Google Scholar 

  88. E. L. Fisher, S. M. Wilkerson-Hill, R. Sarpong, J. Am. Chem. Soc., 2012, 134, 9946; DOI: https://doi.org/10.1021/ja3045647.

    Article  CAS  PubMed  Google Scholar 

  89. S. Chen, J. Zhang, M. Yang, F. Liu, Z. Xie, Y. Liu, W. Lin, D. Wang, X. Li, J. Wang, Chem. Commun., 2019, 55, 3879; DOI: https://doi.org/10.1039/C9CC00785G.

    Article  CAS  Google Scholar 

  90. M. Skvorcova, L. Grigorjeva, A. Jirgensons, Org. Lett., 2015, 17, 2902; DOI: https://doi.org/10.1021/acs.orglett.5b01014.

    Article  CAS  PubMed  Google Scholar 

  91. C.-W. Li, K. Pati, G.-Y. Lin, S. M. A. Sohel, H.-H. Hung, R.-S. Liu, Angew. Chem., Int. Ed., 2010, 49, 9891; DOI: https://doi.org/10.1002/anie.201004647.

    Article  CAS  Google Scholar 

  92. Y. Shen, Q. M. Liao, J. Organomet. Chem., 1989, 371, 31; DOI: https://doi.org/10.1016/0022-328x(89)85204-0.

    Article  CAS  Google Scholar 

  93. Y. Shen, Q. Liao, Synthesis, 1988, 1988, 321; DOI: https://doi.org/10.1055/s-1988-27556.

    Article  Google Scholar 

  94. H. J. Reich, J. E. Holladay, T. G. Walker, J. L. Thompson, J. Am. Chem. Soc., 1999, 121, 9769; DOI: https://doi.org/10.1021/ja991719d.

    Article  CAS  Google Scholar 

  95. C.-Y. Yang, M.-S. Lin, H.-H. Liao, R.-S. Liu, Chem.—Eur. J., 2010, 16, 2696; DOI: https://doi.org/10.1002/chem.200903419.

    Article  CAS  PubMed  Google Scholar 

  96. H.-H. Liao, R.-S. Liu, Chem. Commun., 2011, 47, 1339; DOI: https://doi.org/10.1039/C0CC03309J.

    Article  CAS  Google Scholar 

  97. A. de Meijere, S. I. Kozhushkov, R. Boese, T. Haumann, D. S. Yufit, J. A. K. Howard, L. S. Khaikin, M. Trætteberg, Eur. J. Org. Chem., 2002, 2002, 485; DOI: https://doi.org/10.1002/1099-0690(20022)2002:3<485::aid-ejoc485>3.0.co;2-7.

    Article  Google Scholar 

  98. A. de Meijere, S. I. Kozhushkov, Chem.—Eur. J., 2002, 8, 3195; DOI: https://doi.org/10.1002/1521-3765(20020715)8:14<3195::AID-CHEM3195>3.0.CO;2-J.

    Article  CAS  PubMed  Google Scholar 

  99. S. I. Kozhushkov, K. Wagner-Gillen, A. F. Khlebnikov, A. de Meijere, Synthesis, 2010, 2010, 3967; DOI: https://doi.org/10.1055/s-0030-1258964.

    Article  Google Scholar 

  100. D. Merkel, G. Köbrich, Chem. Ber., 1973, 106, 2025; DOI: https://doi.org/10.1002/cber.19731060631.

    Article  CAS  Google Scholar 

  101. G. Köbrich, D. Merkel, Justus Liebigs Annalen der Chemie, 1972, 761, 50; DOI: https://doi.org/10.1002/jlac.19727610108.

    Article  Google Scholar 

  102. V. D. Gvozdev, K. N. Shavrin, O. M. Nefedov, Russ. Chem. Bull., 2019, 68, 1384; DOI: https://doi.org/10.1007/s11172-019-2566-4.

    Article  CAS  Google Scholar 

  103. V. D. Gvozdev, K. N. Shavrin, A. A. Ageshina, O. M. Nefedov, Russ. Chem. Bull., 2017, 66, 862; DOI: https://doi.org/10.1007/s11172-017-1819-3.

    Article  CAS  Google Scholar 

  104. J. Teske, B. Plietker, Org. Lett., 2018, 20, 2257; DOI: https://doi.org/10.1021/acs.orglett.8b00612.

    Article  CAS  PubMed  Google Scholar 

  105. A. Chen, R. Lin, Q. Liu, N. Jiao, Chem. Commun., 2009, 6842; DOI: https://doi.org/10.1039/b916623h.

  106. Z. Zhang, X. Tang, Q. Xu, M. Shi, Chem.—Eur. J., 2013, 19, 10625; DOI: https://doi.org/10.1002/chem.201301203.

    Article  CAS  PubMed  Google Scholar 

  107. D. Pan, Y. Wei, M. Shi, Org. Lett., 2017, 19, 3584; DOI: https://doi.org/10.1021/acs.orglett.7b01558.

    Article  CAS  PubMed  Google Scholar 

  108. H.-C. Militzer, S. Schömenauer, C. Otte, C. Puls, J. Hain, S. Bräse, A. de Meijere, Synthesis, 1993, 1993, 998; DOI: https://doi.org/10.1055/s-1993-25988.

    Article  Google Scholar 

  109. D. Bauer, G. Köbrich, Chem. Ber., 1976, 109, 2185; DOI: https://doi.org/10.1002/cber.19761090625.

    Article  CAS  Google Scholar 

  110. G. McGaffin, B. Grimm, U. Heinecke, H. Michaelsen, Armin d. Meijere, R. Walsh, Eur. J. Org. Chem., 2001, 2001, 3559; DOI: https://doi.org/10.1002/1099-0690(200109)2001:18<3559::aidejoc3559>3.0.co;2-v.

    Article  Google Scholar 

  111. G. Bengtson, S. Keyaniyan, A. de Meijere, Chem. Ber., 1986, 119, 3607; DOI: https://doi.org/10.1002/cber.19861191210.

    Article  CAS  Google Scholar 

  112. S. Ma, Q. He, Tetrahedron, 2006, 62, 2769; DOI: https://doi.org/10.1016/j.tet.2006.01.009.

    Article  CAS  Google Scholar 

  113. D. Merkel, G. Köbrich, Chem. Ber., 1973, 106, 2040; DOI: https://doi.org/10.1002/cber.19731060632.

    Article  CAS  Google Scholar 

  114. T. Liese, A. de Meijere, Chem. Ber., 1986, 119, 2995; DOI: https://doi.org/10.1002/cber.19861191010.

    Article  CAS  Google Scholar 

  115. S. Bräse, S. Schömenauer, G. McGaffin, A. Stolle, A. de Meijere, Chem.—Eur. J., 1996, 2, 545; DOI: https://doi.org/10.1002/chem.19960020514.

    Article  PubMed  Google Scholar 

  116. K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, Russ. Chem. Bull., 2010, 59, 396; DOI: https://doi.org/10.1007/s11172-010-0092-5.

    Article  CAS  Google Scholar 

  117. K. N. Shavrin, V. D. Gvozdev, D. V. Budanov, S. V. Yurov, O. M. Nefedov, Mendeleev Commun., 2006, 16, 73; DOI: https://doi.org/10.1070/MC2006v016n02ABEH002267.

    Article  Google Scholar 

  118. K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, Russ. Chem. Bull., 2008, 57, 2117; DOI: https://doi.org/10.1007/s11172-008-0287-1.

    Article  CAS  Google Scholar 

  119. K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, Russ. Chem. Bull., 2009, 58, 2432; DOI: https://doi.org/10.1007/s11172-009-0340-8.

    Article  CAS  Google Scholar 

  120. V. D. Gvozdev, K. N. Shavrin, M. P. Egorov, O. M. Nefedov, Mendeleev Commun., 2021, 31, 654; DOI: https://doi.org/10.1016/j.mencom.2021.09.020.

    Article  CAS  Google Scholar 

  121. L. A. Liao, J. M. Fox, J. Am. Chem. Soc., 2002, 124, 14322; DOI: https://doi.org/10.1021/ja0278234.

    Article  CAS  PubMed  Google Scholar 

  122. E. J. Corey, P. L. Fuchs, Tetrahedron Lett., 1972, 13, 3769; DOI: https://doi.org/10.1016/S0040-4039(01)94157-7.

    Article  Google Scholar 

  123. S. Zhou, M. N. Prichard, J. Zemlicka, Tetrahedron, 2007, 63, 9406; DOI: https://doi.org/10.1016/j.tet.2007.06.109.

    Article  CAS  Google Scholar 

  124. H. F. Olivo, F. Velázquez, H. C. Trevisan, Org. Lett., 2000, 2, 4055; DOI: https://doi.org/10.1021/ol006696i.

    Article  CAS  PubMed  Google Scholar 

  125. I. Paterson, R. D. M. Davies, R. Marquez, Angew. Chem., Int. Ed., 2001, 40, 603; DOI: https://doi.org/10.1002/1521-3773(20010202)40:3<603::AID-ANIE603>3.0.CO;2-O.

    Article  CAS  Google Scholar 

  126. J. R. Frost, C. M. Pearson, T. N. Snaddon, R. A. Booth, R. M. Turner, J. Gold, D. M. Shaw, M. J. Gaunt, S. V. Ley, Chem.—Eur. J., 2015, 21, 13261; DOI: https://doi.org/10.1002/chem.201501877.

    Article  CAS  PubMed  Google Scholar 

  127. S. E. Gottschling, T. N. Grant, K. K. Milnes, M. C. Jennings, K. M. Baines, J. Org. Chem., 2005, 70, 2686; DOI: https://doi.org/10.1021/jo047797n.

    Article  CAS  PubMed  Google Scholar 

  128. J.-P. Surivet, P. Panchaud, J.-L. Specklin, S. Diethelm, A.-C. Blumstein, J.-C. Gauvin, L. Jacob, F. Masse, G. Mathieu, A. Mirre, C. Schmitt, R. Lange, N. Tidten-Luksch, C. Gnerre, S. Seeland, C. Herrmann, P. Seiler, M. Enderlin-Paput, A. Mac Sweeney, M. Wicki, C. Hubschwerlen, D. Ritz, G. Rueedi, J. Med. Chem., 2020, 63, 66; DOI: https://doi.org/10.1021/acs.jmedchem.9b01604.

    Article  CAS  PubMed  Google Scholar 

  129. P. Panchaud, J.-P. Surivet, S. Diethelm, A.-C. Blumstein, J.-C. Gauvin, L. Jacob, F. Masse, G. Mathieu, A. Mirre, C. Schmitt, M. Enderlin-Paput, R. Lange, C. Gnerre, S. Seeland, C. Herrmann, H. H. Locher, P. Seiler, D. Ritz, G. Rueedi, J. Med. Chem., 2020, 63, 88; DOI: https://doi.org/10.1021/acs.jmedchem.9b01605.

    Article  CAS  PubMed  Google Scholar 

  130. J. R. Frost, C. M. Pearson, T. N. Snaddon, R. A. Booth, S. V. Ley, Angew. Chem., Int. Ed., 2012, 51, 9366; DOI: https://doi.org/10.1002/anie.201204868.

    Article  CAS  Google Scholar 

  131. B. M. Trost, J. L. Gunzner, O. Dirat, Y. H. Rhee, J. Am. Chem. Soc., 2002, 124, 10396; DOI: https://doi.org/10.1021/ja0205232.

    Article  CAS  PubMed  Google Scholar 

  132. D. A. Evans, J. D. Burch, E. Hu, G. Jaeschke, Tetrahedron, 2008, 64, 4671; DOI: https://doi.org/10.1016/j.tet.2008.02.001.

    Article  CAS  Google Scholar 

  133. H. Huang, J. S. Panek, Org. Lett., 2004, 6, 4383; DOI: https://doi.org/10.1021/ol0480325.

    Article  CAS  PubMed  Google Scholar 

  134. S. Müller, B. Liepold, G. J. Roth, H. J. Bestmann, Synlett, 1996, 1996, 521; DOI: https://doi.org/10.1055/s-1996-5474.

    Article  Google Scholar 

  135. E. Mons, I. D. C. Jansen, J. Loboda, B. R. van Doodewaerd, J. Hermans, M. Verdoes, C. A. A. van Boeckel, P. A. van Veelen, B. Turk, D. Turk, H. Ovaa, J. Am. Chem. Soc., 2019, 141, 3507; DOI: https://doi.org/10.1021/jacs.8b11027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. F.-R. Alexandre, G. Brandt, C. Caillet, D. Chaves, T. Convard, M. Derock, D. Gloux, Y. Griffon, L. Lallos, F. Leroy, M. Liuzzi, A.-G. Loi, L. Moulat, C. Musiu, C. Parsy, H. Rahali, V. Roques, M. Seifer, D. Standring, D. Surleraux, Bioorg. Med. Chem. Lett., 2015, 25, 3984; DOI: https://doi.org/10.1016/j.bmcl.2015.07.020.

    Article  CAS  PubMed  Google Scholar 

  137. D. Shu, X. Li, M. Zhang, P. J. Robichaux, W. Tang, Angew. Chem., Int. Ed., 2011, 50, 1346; DOI: https://doi.org/10.1002/anie.201006881.

    Article  CAS  Google Scholar 

  138. X. Xu, Y. Wang, X. Cui, L. Wojtas, X. P. Zhang, Chem. Sci., 2017, 8, 4347; DOI: https://doi.org/10.1039/C7SC00658F.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. B. D. Sherry, A. Fürstner, Chem. Commun., 2009, 7116; DOI: https://doi.org/10.1039/B918818E.

  140. K. B. Wiberg, Acc. Chem. Res., 1996, 29, 229; DOI: https://doi.org/10.1021/Ar950207a.

    Article  CAS  Google Scholar 

  141. A. de Meijere, Angew. Chem., Int. Ed., 1979, 18, 809; DOI: https://doi.org/10.1002/anie.197908093.

    Article  Google Scholar 

  142. A. B. Charette, A. Giroux, J. Org. Chem., 1996, 61, 8718; DOI: https://doi.org/10.1021/jo9614654.

    Article  CAS  PubMed  Google Scholar 

  143. B. de Carné-Carnavalet, A. Archambeau, C. Meyer, J. Cossy, B. Folléas, J.-L. Brayer, J.-P. Demoute, Org. Lett., 2011, 13, 956; DOI: https://doi.org/10.1021/ol1029996.

    Article  PubMed  Google Scholar 

  144. S. Inuki, I. Ohta, S. Ishibashi, M. Takamatsu, K. Fukase, Y. Fujimoto, J. Org. Chem., 2017, 82, 7832; DOI: https://doi.org/10.1021/acs.joc.7b00945.

    Article  CAS  PubMed  Google Scholar 

  145. K. C. Nicolaou, M. Buchman, G. Bellavance, J. Krieger, P. Subramanian, K. K. Pulukuri, J. Org. Chem., 2018, 83, 12374; DOI: https://doi.org/10.1021/acs.joc.8b02137.

    Article  CAS  PubMed  Google Scholar 

  146. B. de Carné-Carnavalet, A. Archambeau, C. Meyer, J. Cossy, B. Folléas, J.-L. Brayer, J.-P. Demoute, Chem.—Eur. J., 2012, 18, 16716; DOI: https://doi.org/10.1002/chem.201203153.

    Article  PubMed  Google Scholar 

  147. J. Kim, M. Sim, N. Kim, S. Hong, Chem. Sci., 2015, 6, 3611; DOI: https://doi.org/10.1039/C5SC01137J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. S. Jerhaoui, J.-P. Djukic, J. Wencel-Delord, F. Colobert, ACS Catalysis, 2019, 9, 2532; DOI: https://doi.org/10.1021/acscatal.8b04946.

    Article  CAS  Google Scholar 

  149. T. Fujiwara, T. Okabayashi, Y. Takahama, N. Matsuo, Y. Tanabe, Eur. J. Org. Chem., 2018, 2018, 6018; DOI: https://doi.org/10.1002/ejoc.201801160.

    Article  CAS  Google Scholar 

  150. N. J. Turro, W. B. Hammond, J. Am. Chem. Soc., 1966, 88, 3672; DOI: https://doi.org/10.1021/ja00967a054.

    Article  CAS  Google Scholar 

  151. J. Salaün, F. Bennani, J. C. Compain, A. Fadel, J. Ollivier, J. Org. Chem., 1980, 45, 4129; DOI: https://doi.org/10.1021/jo01309a012.

    Article  Google Scholar 

  152. J. Salaün, J. Marguerite, Organic Syntheses, 1985, 63, 147; DOI: https://doi.org/10.15227/orgsyn.063.0147.

    Article  Google Scholar 

  153. I. Emme, C. Bruneau, P. H. Dixneuf, H.-C. Militzer, A. de Meijere, Synthesis, 2007, 2007, 3574; DOI: https://doi.org/10.1055/s-2007-990874.

    Article  Google Scholar 

  154. F. Kleinbeck, F. D. Toste, J. Am. Chem. Soc., 2009, 131, 9178; DOI: https://doi.org/10.1021/ja904055z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. B. M. Trost, J. Xie, N. Maulide, J. Am. Chem. Soc., 2008, 130, 17258; DOI: https://doi.org/10.1021/ja807894t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. D. J. Tindall, H. Krause, A. Fürstner, Adv. Synth. Catal., 2016, 358, 2398; DOI: https://doi.org/10.1002/adsc.201600357.

    Article  CAS  Google Scholar 

  157. V. Atlan, S. Racouchot, M. Rubin, C. Bremer, J. Ollivier, A. de Meijere, J. Salaün, Tetrahedron: Asymmetry, 1998, 9, 1131; DOI: https://doi.org/10.1016/S0957-4166(98)00107-4.

    Article  CAS  Google Scholar 

  158. J. Liu, Y. An, H.-Y. Jiang, Z. Chen, Tetrahedron Lett., 2008, 49, 490; DOI: https://doi.org/10.1016/j.tetlet.2007.11.093.

    Article  CAS  Google Scholar 

  159. Y. An, J. Liu, H.-Y. Jiang, Y. Wang, Z. Chen, Tetrahedron Lett., 2008, 49, 3124; DOI: https://doi.org/10.1016/j.tetlet.2008.03.041.

    Article  CAS  Google Scholar 

  160. S. Yang, W. Yuan, Q. Xu, M. Shi, Chem.—Eur. J., 2015, 21, 15964; DOI: https://doi.org/10.1002/chem.201502634.

    Article  CAS  PubMed  Google Scholar 

  161. D.-Y. Li, W. Fang, Y. Wei, M. Shi, Chem.—Eur. J., 2016, 22, 18080; DOI: https://doi.org/10.1002/chem.201604200.

    Article  CAS  PubMed  Google Scholar 

  162. W. Zang, L. Wang, Y. Wei, M. Shi, Y. Guo, Adv. Synth. Catal., 2019, 361, 2321; DOI: https://doi.org/10.1002/adsc.201900053.

    Article  CAS  Google Scholar 

  163. C. Ji, Q. Xu, M. Shi, Adv. Synth. Catal., 2017, 359, 974; DOI: https://doi.org/10.1002/adsc.201601308.

    Article  CAS  Google Scholar 

  164. S. Yang, K.-H. Rui, X.-Y. Tang, Q. Xu, M. Shi, J. Am. Chem. Soc., 2017, 139, 5957; DOI: https://doi.org/10.1021/jacs.7b02027.

    Article  CAS  PubMed  Google Scholar 

  165. W. Yuan, X. Dong, M. Shi, P. McDowell, G. Li, Org. Lett., 2012, 14, 5582; DOI: https://doi.org/10.1021/ol302705z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. W. Yuan, X. Tang, Y. Wei, M. Shi, Chem.—Eur. J., 2014, 20, 3198; DOI: https://doi.org/10.1002/chem.201304579.

    Article  CAS  PubMed  Google Scholar 

  167. N. Iwasawa, T. Matsuo, M. Iwamoto, T. Ikeno, J. Am. Chem. Soc., 1998, 120, 3903; DOI: https://doi.org/10.1021/ja9734004.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Gvozdev.

Additional information

Dedicated to Academician of the Russian Academy of Sciences O. M. Nefedov on the occasion of his 90th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2051–2083, November, 2021.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gvozdev, V.D., Shavrin, K.N., Egorov, M.P. et al. Methods for the synthesis of functionalized alkynylcyclopropanes. Russ Chem Bull 70, 2051–2083 (2021). https://doi.org/10.1007/s11172-021-3318-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3318-9

Key words

Navigation