Skip to main content
Log in

Kinetic patterns for thermal oxidation of binary and ternary blends based on polylactide and polyethylene

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The effect of introduced aged low density polyethylene (LDPE-A) on structure and properties of mixed blends based on polylactide (PLA) and low density polyethylene (LDPE) was revealed. The accumulation of carbonyl groups in the LDPE matrix after thermal aging was detected by IR spectroscopy. Thermophysical characteristics of such polyethylene (PE) and its ternary blends were estimated using differential scanning calorimetry and thermogravimetric analysis. It was shown that the melting temperatures of components of the blends practically do not change, while the degree of crystallinity of PLA decreases by 2–12% upon increasing the content of LDPE-A. Physico-mechanical characteristics of the polymer blends decrease upon the addition of more than 30 wt.% of LDPE-A. Kinetic curves for the oxygen absorption were recorded at 80, 90, and 110 °C. It was shown that the addition of LDPE-A to a binary PLA—LDPE blend promotes the initial step of oxygen absorption, as well as the entire process of thermal oxidative degradation of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wang, M.A. Hillmyer, J. Polym. Sci., Part. A, 2001, 39, 2755–2766; DOI: https://doi.org/10.1002/pola.1254.

    Article  CAS  Google Scholar 

  2. K. S. Anderson, S. H. Lim, M. A. Hillmyer, J. Appl. Polym. Sci., 2003, 89, 3757–3768; DOI: https://doi.org/10.1002/app.12462.

    Article  CAS  Google Scholar 

  3. G. Singh, H. Bhunia, A. Rajor, V. Choudhary, Polym. Bull., 2010, 66, 939–953; DOI: https://doi.org/10.1007/s00289-010-0367-x.

    Article  Google Scholar 

  4. I. I. Stoikov, P. L. Padnya, O. A. Mostovaya, A. A. Vavilova, V. V. Gorbachuk, D. N. Shurpik, G. A. Evtyugin, Russ. Chem. Bull., 2019, 68, 1962; DOI: https://doi.org/10.1007/s11172-019-2655-4.

    Article  CAS  Google Scholar 

  5. E. S. Trofimchuk, M. A. Moskvina, O. A. Ivanova, V. V. Potseleev, V. A. Demina, N. I. Nikonorova, A. V. Bakirov, N. G. Sedushb, S. N. Chvalun, Mendeleev Commun., 2020, 30, 171–173; DOI: https://doi.org/10.1016/j.mencom.2020.03.013.

    Article  CAS  Google Scholar 

  6. M. García, I. Garmendia, J. Garcia, J. Appl. Polym. Sci., 2008, 107(5), 2994–3004; DOI: https://doi.org/10.1002/app.27519.

    Article  Google Scholar 

  7. N. Sutivisedsak, H. N. Cheng, M. K. Dowd, G. W. Selling, A. Biswas, Ind. Crop. Prod., 2012, 36, 127–134; DOI: https://doi.org/10.1016/j.indcrop.2011.08.016.

    Article  CAS  Google Scholar 

  8. S. M. Ogbomo, K. Chapman, C. Webber, R. Bledsoe, N. A. D’Souza, J. Appl. Polym. Sci., 2009, 112, 1294–1301; DOI: https://doi.org/10.1002/app.29519.

    Article  CAS  Google Scholar 

  9. P. Pan, B. Zhu, W. Kai, S. Serizawa, M. Iji, Y. Inoue, J. Appl. Polym. Sci., 2007, 105(3), 1511–1520; DOI: https://doi.org/10.1002/app.26407.

    Article  CAS  Google Scholar 

  10. T. Nishino, K. Hirao, M. Kotera, K. Nakamae, H. Inagaki, Compos. Sci. Technol., 2003, 63, 1281–1286; DOI: https://doi.org/10.1016/S0266-3538(03)00099-X.

    Article  CAS  Google Scholar 

  11. M. Nofar, D. Sacligil, P. J. Carreau, M. R. Kamal, M.-C. Heuzey, Int. J. Biol. Macromol., 2019, 125, 307–360; DOI: https://doi.org/10.1016/j.ijbiomac.2018.12.002.

    Article  CAS  Google Scholar 

  12. L. Ashabi, S. H. Jafari, H. A. Khonakdar, R. Boldt, U. Wagenknecht, G. Heinrich, Express Polym. Lett., 2013, 7, 21–39; DOI: https://doi.org/10.3144/expresspolymlett.2013.3.

    Article  CAS  Google Scholar 

  13. L. Ashabi, S. H. Jafari, H. A. Khonakdar, B. Kretzschmar, U. Wagenknecht, G. Heinrich, J. Appl. Polym. Sci., 2013, 130, 749–758; DOI: https://doi.org/10.1002/app.39209.

    Article  CAS  Google Scholar 

  14. G. Singh, N. Kaur, H. Bhuida, P. K. Bajpai, U. K. Mandal, J. Appl. Polym. Sci., 2012, 124, 1993–1998; DOI: https://doi.org/10.1002/app.35216.

    Article  CAS  Google Scholar 

  15. H. Wang, B. Wei, X. Gu, T. Lin, Y. Li, Polymer, 2020, 208, 122948; DOI: https://doi.org/10.1016/j.polymer.2020.122948.

    Article  CAS  Google Scholar 

  16. A. L. Perkel, S. G. Voronina, Russ. Chem. Bull., 2020, 69, 2031; DOI: https://doi.org/10.1007/s11172-020-2999-9.

    Article  CAS  Google Scholar 

  17. L. S. Shibryayeva, D. Sc. (Chem.) Thesis, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 2004 (in Russian).

    Google Scholar 

  18. S. Lv, Y. Zhang, H. Tan, Waste Management, 2019, 87, 335–344; DOI: https://doi.org/10.1016/j.wasman.2019.02.027.

    Article  CAS  Google Scholar 

  19. Yu. V. Tertyshnaya, L. S. Shibryaeva, A. A. Popov, Russ. J. Phys. Chem. B, 2012, 6, 38–41; DOI: https://doi.org/10.1134/S1990793112010149.

    Article  CAS  Google Scholar 

  20. R. A. Abdullaev, G. P. Ovchinnikova, T. P. Ustinova, Plastiche skie massy [Plastic Materials], 2012, 4, 49–53 (in Russian).

    Google Scholar 

  21. O. V. Yershova, M. A. Mel’nichenko, K. V. Trifonova, Uspekhi sovremennogo yestestvoznaniya [Advances in Modern Natural Sciences], 2015, 11, 26–30 (in Russian).

    Google Scholar 

  22. E. W. Fischer, H. J. Sterzel, G. Wegner, Colloid. Polym. Sci., 1973, 251, 980; DOI: https://doi.org/10.1007/BF01498927.

    CAS  Google Scholar 

  23. X. Zhou, J.C. Feng, J. J. Yi, L. Wang, Mater. Design, 2013, 49, 502–510; DOI: https://doi.org/10.1016/j.matdes.2013.01.069.

    Article  CAS  Google Scholar 

  24. Yu. A. Shlyapnikov, S. G. Kiryushkin, A. P. Mar’in, Antiokislitel’naya stabilizatsiya polimerov [Antioxidant Stabilization of Polymers], Khimia, Moscow, 1986, 256 p. (in Russian).

    Google Scholar 

  25. M. V. Podzorova, Yu. V. Tertyshnaya, A. A. Popov, IOP Conf. Ser.: Mater. Sci. Eng., 2018, 347, 012015; DOI: https://doi.org/10.1088/1757-899X/347/1/012015.

    Article  Google Scholar 

  26. A. K. Zykova, P. V. Pantyukhov, T. V. Monakhova, O. V. Shatalova, A. V. Krivandin, A. A. Popov, AIP Conf. Proc., 2019, 2167, 020412; DOI: https://doi.org/10.1063/1.5132279.

    Article  CAS  Google Scholar 

  27. M. V. Podzorova, Yu. V. Tertyshnaya, IOP Conf. Ser.: Mater. Sci. Eng., 2020, 848(1), 012071; DOI: https://doi.org/10.1088/1757-899X/848/1/012071.

    Article  CAS  Google Scholar 

  28. S. Lv, J. Gu, J. Cao, H. Tan, Y. Zhang, Int. J. Biol. Macromol., 2015, 74, 297–303; DOI: https://doi.org/10.1016/j.ijbiornac.2014.12.022.

    Article  CAS  Google Scholar 

  29. M.V. Podzorova, PhD (Chem.) Thesis, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 2020, 140 p. (in Russian).

    Google Scholar 

  30. Yu. V. Tertyshnaya, M. V. Podzorova, A. A. Popov, Ecology and Industry of Russia, 2016, 20(7), 22–25; DOI: https://doi.org/10.18412/1816-0395-2016-7-22-25.

    Article  Google Scholar 

  31. M. V. Podzorova, Yu. V. Tertyshnaya, T.V. Monakhova, A. A. Popov, Rus. J. Phys. Chem. B., 2016, 10(5), 825–829; DOI: https://doi.org/10.7868/S0207401X16090090.

    Article  CAS  Google Scholar 

  32. N. M. Emanuel, A. L. Buchachenko, Khimicheskaya fizika molekulyarnogo razrusheniya i stabilizatsii polimerov [Chemical Physics of Molecular Degradation and Stabilization of Polymers], Nauka, Moscow, 1988.

    Google Scholar 

  33. L. S. Shibryaeva, N. N. Korzh, A. V. Krivandin, O. V. Shatalova, S. G. Karpova, L. M. Chepel’, E. V. Prut, Polym. Sci., Ser. A., 2007, 49(6), 678–689; DOI: https://doi.org/10.1134/S0965545X07060089.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Podzorova.

Additional information

Published in Russian in Izyestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1791–1797, September, 2021.

The authors are grateful to the “New Materials and Technologies” Research Equipment Sharing Center at the Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences and to the Research Equipment Sharing Center at the Plekhanov Russian University of Economics for the provided devices and the financial support.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podzorova, M.V., Tertyshnaya, Y.V. Kinetic patterns for thermal oxidation of binary and ternary blends based on polylactide and polyethylene. Russ Chem Bull 70, 1791–1797 (2021). https://doi.org/10.1007/s11172-021-3284-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3284-2

Key words

Navigation