Skip to main content
Log in

Selective laser melting of Zn-Si-substituted hydroxyapatite

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The behavior of hydroxyapatite containing zinc and silicate ions during selective laser melting under irradiation at 10.6 µm was studied for the first time. For comparison, the behavior of the material heated in a high-temperature furnace was investigated. It was found that, in contrast to the slow heating in the furnace, heating of the mechanochemically synthesized material with the degree of substitution x = 0.2 by scanning the laser spot enables its recrystallization with retention of substituent ions in the apatite structure. At high degrees of substitution (x = 1, 2), hydroxyapatites are unstable under both heating regimes. Different heating conditions lead to the formation of different impurity phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 3D Printing in Medicine, Ed. Deepak M. Kalaskar, Woodhead Publishing, 2017, 226 pp.

  2. F. Krujatz, A. Lode, J. Seidel, T. Bley, M. Gelinsky, J. Steingroewer, New Biotechnol., 2017, 39, 222; DOI: https://doi.org/10.1016/j.nbt.2017.09.001.

    Article  CAS  Google Scholar 

  3. C. M. B. Ho, S. H. Ng, Y. J. Yoon, Int. J. Precis. Eng. Manuf., 2015, 16, 1035; DOI: https://doi.org/10.1007/s12541-015-0134-x.

    Article  Google Scholar 

  4. Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc., 2019, 39, 661; DOI:https://doi.org/10.1016/j.jeurceramsoc.2018.11.013.

    Article  CAS  Google Scholar 

  5. M. J. Zafar, D. Zhu, Z. Zhang, Materials, 2019, 12, 3361; DOI: https://doi.org/10.3390/ma12203361.

    Article  CAS  Google Scholar 

  6. S. M. Barinov, V. S. Komlev, Biokeramika na osnove fosfatov kal’tsiya [Bioceramics Based on Calcium Phosphates], Nauka, Moscow, 2005, 204 pp. (in Russian).

    Google Scholar 

  7. S. V. Dorozhkin, J. Biotechnol. Biomed. Sci., 2018, 1, 25; DOI: https://doi.org/10.14302/issn.2576-6694.jbbs-18-2143.

    Article  Google Scholar 

  8. A. Kumar, S. Kargozar, F. Baino, S. S. Han, Front. Mater., 2019, 6, 313; DOI: https://doi.org/10.3389/fmats.2019.00313.

    Article  Google Scholar 

  9. C. Gao, Y. Deng, P. Feng, Z. Mao, P. Li, B. Yang, J. Deng, Y. Cao, C. Shuai, S. Peng, Int. J. Mol. Sci., 2014, 15, 4714; DOI: https://doi.org/10.3390/ijms15034714.

    Article  Google Scholar 

  10. U. Kalsoom, P. N. Nesterenko, B. Paull, RSC Adv., 2016, 6, 60355; DOI: https://doi.org/10.1039/c6ra11334f.

    Article  CAS  Google Scholar 

  11. K. Lin, R. Sheikh, S. Romanazzo, I. Roohani, Materials, 2019, 12, 2660. DOI: https://doi.org/10.3390/ma12172660.

    Article  CAS  Google Scholar 

  12. C. Shuai, C. Gao, Y. Nie, H. Hu, Y. Zhou, S. Peng, Nanotechnol., 2011, 22, 285703; DOI: https://doi.org/10.1088/0957-4484/22/28/285703.

    Article  Google Scholar 

  13. C. Shuai, Y. Nie, C. Gao, P. Feng, J. Zhuang, Y. Zhou, S. Peng, J. Exp. Nanosci., 2013, 8, 762; DOI: https://doi.org/10.1080/17458080.2011.606507.

    Article  Google Scholar 

  14. C. Shuai, P. Feng, C. Cao, S. Peng, Biotechnol. Bioprocess Eng., 2013, 18, 3, 520; DOI: https://doi.org/10.1007/s12257-012-0508-1.

    Article  Google Scholar 

  15. P. Feng, M. Niu, C. Gao, S. Peng, C. Shuai, Sci. Rep., 2014, 4, 1; DOI: https://doi.org/10.1038/srep05599.

    CAS  Google Scholar 

  16. A. D. Anastasiou, C. L. Thomson, S. A. Hussain, T. J. Edwards, S. Strafford, M. Malinowski, R. Mathieson, C. T. A. Brown, A. P. Brown, M. S. Duggal, A. Jha, Mater. Des., 2016, 101, 346; DOI: https://doi.org/10.1016/j.matdes.2016.03.159.

    Article  CAS  Google Scholar 

  17. L. Ferrage, G. Bertrand, P. Lenormand, D. Grossin, B. Ben-Nissan, J. Aust. Ceram. Soc., 2017, 53, 11; DOI: https://doi.org/10.1007/s41779-016-0003-9.

    Article  CAS  Google Scholar 

  18. S. Bose, S. Vahabzadeh, A. Bandyopadhyay, Mater. Today, 2013, 16, 496; DOI: https://doi.org/10.1016/j.mattod.2013.11.017.

    Article  CAS  Google Scholar 

  19. N. V. Bulina, A. I. Titkov, S. G. Baev, S. V. Makarova, V. R. Khusnutdinov, V. P. Bessmeltsev, N. Z. Lyakhov, Mater. Today: Proc., 2020, 37, 4022; DOI: https://doi.org/10.1016/j.matpr.2020.06.199.

    Google Scholar 

  20. M. Šupova, Ceram. Int., 2015, 41, 9203; DOI: https://doi.org/10.1016/j.ceramint.2015.03.316.

    Article  Google Scholar 

  21. T. Tite, A. C. Popa, L. M. Balescu, I. M. Bogdan, I. Pasuk, J. M. F. Ferreira, G. E. Stan, Materials, 2018, 11, 2081; DOI: https://doi.org/10.3390/ma11102081.

    Article  Google Scholar 

  22. M. A. Zykin, E. O. Anokhin, P. E. Kazin, Russ. Chem. Bull., 2019, 78, 751; DOI: https://doi.org/10.1007/s11172-019-2482-7.

    Article  Google Scholar 

  23. H. M. Rietveld, J. Appl. Crystallogr., 1969, 2, 65; DOI: https://doi.org/10.1107/S0021889869006558.

    Article  CAS  Google Scholar 

  24. M. V. Chaikina, N. V. Bulina, I. Yu. Prosanov, O. B. Vinokurova, A. V. Ishchenko, Inorg. Mater., 2020, 56, 402; DOI: https://doi.org/10.1134/S0020168520040044.

    Article  CAS  Google Scholar 

  25. N. V. Bulina, M. V. Chaikina, A. S. Andreev, O. B. Lapina, A. V. Ishchenko, I. Yu. Prosanov, K. B. Gerasimov, L. A. Solovyov, Eur. J. Inorg. Chem., 2014, 28, 4810; DOI: https://doi.org/10.1002/ejic.201402246.

    Article  Google Scholar 

  26. R. Z. LeGeros, G. Bonel, R. Legros, Calcif. Tissue Res., 1978, 26, 111. DOI: https://doi.org/10.1007/BF02013245.

    Article  CAS  Google Scholar 

  27. R. Ghosh, R. Sarkar, Mater. Sci. Eng. C, 2016, 67, 345; DOI:https://doi.org/10.1016/j.msec.2016.05.029.

    Article  CAS  Google Scholar 

  28. I. V. Fadeeva, A. S. Fomin, S. M. Barinov, G. A. Davydova, I. I. Selezneva, I. I. Preobrazhenskii, M. K. Rusakov, A. A. Fomna, V. A. Volchenkova, Inorg. Mater., 2020, 56, 738; DOI: https://doi.org/10.1134/S0020168520070055.

    Article  Google Scholar 

  29. N. V. Bulina, M. V. Chaikina, O. B. Vinokurova, I. Yu. Prosanov, N. Z. Lyakhov, Chemistry for Sustainable Development, 2019, 27, 257; DOI: https://doi.org/10.15372/CSD2019134.

    Google Scholar 

  30. S. Gomes, A. Kaur, J. M. Nedelec, G. Renaudin, J. Mater. Chem. B, 2014, 2, 536; DOI: https://doi.org/10.1039/c3tb21397h.

    Article  CAS  Google Scholar 

  31. K. Tõnsuaadu, K. A. Gross, L. Plūduma, M. Veiderma, J. Therm. Anal. Calorim., 2012, 110, 647; DOI: https://doi.org/10.1007/s10973-011-1877-y.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Titkov.

Additional information

Published in Russian in Izvestiya AkademiiNauk. Seriya Khimicheskaya, No. 9, pp. 1682–1689, September, 2021.

This work was carried out within the framework of the State Assignment to the Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences (Project No. AAAA-A17-117030310277-6) and with the financial support from the Russian Foundation for Basic Research (Project No. 18-29-11064).

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulina, N.V., Titkov, A.I., Isaev, D.D. et al. Selective laser melting of Zn-Si-substituted hydroxyapatite. Russ Chem Bull 70, 1682–1689 (2021). https://doi.org/10.1007/s11172-021-3270-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3270-8

Key words

Navigation