Skip to main content
Log in

One-step low-temperature synthesis of akaganeite and maghemite magnetic nanoparticles

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A facile approach to the preparation of magnetic nanoparticles based on the oxide or oxide-hydroxide of chemically inert iron species (Fe3+ ions) stabilized with a polymer shell was proposed. The polymer matrices used for this purpose were the macromolecules of sodium alginate, a natural anionic polysaccharide, and a synthetic polymer preliminarily converted to microgel using N-bis-isopropylacrylamide containing polyacrylic acid (PAA) units. When sodium alginate is used for stabilization, iron oxide nanoparticles (maghemite) are formed, while in the presence of PAA-containing microgels, iron oxide-hydroxide nanoparticles (akageneite) are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hu, Y. Yuan, S. Lim, C. H. Wang, Materials & Design, 2019, 108241; DOI: https://doi.org/10.1016/j.matdes.2019.108241.

  2. S. C. N. Tang, I. M. C. Lo, Water Research, 2013, 47, 2613–2632; DOI: https://doi.org/10.1016/j.watres.2013.02.039.

    Article  CAS  Google Scholar 

  3. R. Thomas, I.-K. Park, Y. Jeong, International J. Molecular Sciences, 2013, 14, 15910–15930; DOI: https://doi.org/10.3390/ijms140815910.

    Article  Google Scholar 

  4. D. V. Pryazhnikov, I. V. Kubrakova, N. Grebneva-Balyuk, T. A. Maryutina, Mendeleev Commun., 2019, 29, 675–677; DOI: https://doi.org/10.1016/j.mencom.2019.11.024.

    Article  CAS  Google Scholar 

  5. L. R. Bogdanova, A. M. Rogov, O. S. Zueva, Yu. F. Zuev, Russ. Chem. Bull., 2019, 68, 400–404; DOI: https://doi.org/10.1007/s11172-019-2399-1.

    Article  CAS  Google Scholar 

  6. N. A. Samoilova, M. A. Krayukhina, Russ. Chem. Bull., 2020, 69, 1157–1164; DOI: https://doi.org/10.1007/s11172-020-2883-7.

    Article  CAS  Google Scholar 

  7. R. I. Khusnutdinov, A. R. Bayguzina, Russ. Chem. Rev., 2020, 89, 824–857; DOI: https://doi.org/10.1070/RCR4943.

    Article  CAS  Google Scholar 

  8. A. K. Gupta, R. R. Naregalkar, V. D. Vaidya, M. Gupta, Nanomedicine, 2007, 2, 23–39; DOI: https://doi.org/10.2217/17435889.2.1.23.

    Article  CAS  Google Scholar 

  9. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R. N. Muller, Chem. Rev., 2008, 108, 2064–2110; DOI: https://doi.org/10.1021/cr068445e.

    Article  CAS  Google Scholar 

  10. O. K. Arriortua, M. Insausti, L. Lezama, Colloids and Surfaces B: Biointerfaces, 2018, 165, 315; DOI: https://doi.org/10.1016/j.colsurfb.2018.02.031.

    Article  CAS  Google Scholar 

  11. M. S. A. Darwish, J. Mol. Liq., 2017, 231, 80; DOI: https://doi.org/10.1016/j.molliq.2017.01.094.

    Article  CAS  Google Scholar 

  12. A. Skumiel, J. Magn. Magn. Mater., 2006, 307, 85; DOI:https://doi.org/10.1134/S0044453719070100.

    Article  CAS  Google Scholar 

  13. A. E. Deatsch, B. A. Evans, J. Magn. Magn. Mater., 2014, 354, 163–172; DOI: j.jmmm.2013.11.006.

    Article  CAS  Google Scholar 

  14. S. P. Gubin, Russ. Chem. Rev., 2005, 74, 489; DOI: https://doi.org/10.1070/RC2005v074n06ABEH000897.

    Article  CAS  Google Scholar 

  15. A. M. Dentin, T. G. Khonina, E. V. Shadrina, E. A. Bogdanova, D. K. Kuznetsov, A. V. Mekhaev, V. Ya. Shur, V. P. Krasnov, Russ. Chem. Bull., 2019, 68, 1178–1182; DOI:https://doi.org/10.1007/s11172-019-2536-x.

    Article  CAS  Google Scholar 

  16. J. Y. Yun, R. Yu, K. Y. Jin, J. Nanoscience and Nanotechnology, 2016, 16, 11080–11083; DOI: https://doi.org/10.1166/jnn.2016.13293.

    Article  CAS  Google Scholar 

  17. X. Ge, Y. Ma, X. Song, G. Wang, H. Zhang, Y. Zhang, H. Zhao, ACS Appl. Mater. Interfaces, 2017, 9, 13480–13490; DOI: https://doi.org/10.1021/acsami.7b01275.

    Article  CAS  Google Scholar 

  18. T. Yang, L. Meng, S. Han, J. Hou, S. Wang, X. Wang, RSC Adv., 7, 34687–34693; DOI: https://doi.org/10.1039/C7RA06440C.

  19. L. Kuang, Y. Liu, D. Fu, Y. Zhao, J. Colloid and Interface Science, 2017, 490, 259–269; DOI: https://doi.org/10.1016/j.jcis.2016.11.071.

    Article  CAS  Google Scholar 

  20. Y. Zhao, H. Jiangyong, H. Chen, J. Photochemistry and Photobiology A: Chemistry, 2010, 212, 94–100; DOI: j.jphotochem.2010.04.001.

    Article  CAS  Google Scholar 

  21. G. Kasparis, A. S. Erdocio, J. M. Tuffnell, N. T. K. Thanh, CrystEngComm, 2019, 21, 1293–1301; DOI: https://doi.org/10.1039/C8CE01778F.

    Article  CAS  Google Scholar 

  22. V. V. Spiridonov, A. N. Zakharov, M. I. Afanasov, A. V. Mironov, N. S. Perov, A. S. Semisalova, Mendeleev Commun., 2015, 25, 145; DOI: https://doi.org/10.1016/j.mencom.2015.03.024.

    Article  Google Scholar 

  23. E. E. Yurmanova, I. M. Le-Deygen, V. V. Spiridonov, A. V. Sybachin, Mendeleev Commun., 2020, 30, 768–769; DOI: https://doi.org/10.1016/j.mencom.2020.11.026.

    Article  CAS  Google Scholar 

  24. R. Janot, D. Guérard. J. Alloys and Compounds, 2002, 333, 302–307; DOI: https://doi.org/10.1016/S0925-8388(01)01737-6.

    Article  CAS  Google Scholar 

  25. M. H. Futscher, Ma. Philipp, P. Müller-Buschbaum, A. Schulte, Scientific Reports, 2017, 7, 17012; DOI: https://doi.org/10.1038/s41598-017-17272-7.

    Article  Google Scholar 

  26. J. Van den Brand, S. Van Gils, P. C. J. Beentjes, H. Terryn, J. H. W. de Wit, Appl. Surface Sci., 2004, 235, 465–474; DOI:https://doi.org/10.1016/j.apsusc.2004.05.002.

    Article  CAS  Google Scholar 

  27. L. M. Sanchez, D. A. Martin, V. A. Alvarez, J. S. Gonzalez, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 543, 28–37; DOI: https://doi.org/10.1016/j.colsurfa.2018.01.050.

    Article  CAS  Google Scholar 

  28. G. I. Dzhardimalieva, A. K. Zharmagambetova, S. E. Kudaibergenov, I. E. Uflyand, Kinetics and Catalysis, 2020, 61, 198–223; DOI: https://doi.org/10.1038/s41598-017-17272-7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Antonova.

Additional information

Based on the materials of the VIII All-Russian Kargin Conference “Polymers-2020” (November 9–13, 2020, Moscow, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1675–1681, September, 2021.

The study was performed within the project “Modern Problems of the Chemistry and Physical Chemistry of Macromolecular Compounds” (state budget No. AAAA-A-16-116031 050014-6).

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiridonov, V.V., Antonova, Y.A., Kusaya, V.S. et al. One-step low-temperature synthesis of akaganeite and maghemite magnetic nanoparticles. Russ Chem Bull 70, 1675–1681 (2021). https://doi.org/10.1007/s11172-021-3269-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3269-1

Key words

Navigation