Skip to main content
Log in

Synthesis and Structural Characterization of Polymer-Based Cobalt Ferrite Nanocomposite with Core–Shell Structure

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Polymer hybrids have become a major area of research and development owing to the remarkable properties and multifunctional behaviour deriving from their nanocomposite/nanohybrid structure. In this class, magnetic polymer nanocomposite are of special interest because of the combination of excellent magnetic properties, high specific area, surface active sites, high chemical stability and good biocompatibility. The present communication primarily concentrates on the investigation of structural characterization of alginate–cobalt ferrite nanocomposite (CoFe2O4–ANa NC) prepared by ex situ polymerization method. The structural and morphological properties of CoFe2O4–ANa NC were analysed using X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and dynamic light scattering. The specific surface area of the nanocomposite was analysed using BET surface area analysis. The functional group and the thermal stability were examined using FTIR and TGA/DTA respectively. The characterization results have pointed out the successful role of sodium alginate in stabilizing cobalt ferrite nanoparticles (CoFe2O4 NP). The SEM and TEM images revealed the well interspersed state of cobalt ferrite with sodium alginate. It is obvious to note the increased size and the specific surface area for CoFe2O4 nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Abu-Abdeen, A.S. Ayesh, A.A. Al Jaafari, Physical characterizations of semi-conducting conjugated polymer-CNTs nanocomposite. J. Polym. Res. 19, 9839 (2012)

    Article  Google Scholar 

  2. P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposite: synthesis, structure, properties and new application opportunities. Mater. Res. 12(1), 1–39 (2009)

    Article  CAS  Google Scholar 

  3. Y.H. Choa, J.K. Yang, B.H. Kim, Y.K. Jeong, J.S. Lee, T. Nakayama, Preparation and characterization of metal: ceramic nanoporous nanocomposite powders. J. Magn. Magn. Mater. 266(1–2), 12–19 (2003)

    Article  CAS  Google Scholar 

  4. D. Mishra, K.K. Senapati, C. Borgohain, A. Perumal, (2012) CoFe2O4–Fe3O4 magnetic nanocomposites as photocatalyst for the degradation of methyl orange dye. J. Nanotechnol. 2012:6

    Google Scholar 

  5. J.H. Jung, J.H. Lee, S. Shinkai, Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields. ChemSoc Rev. 40, 4464–4474 (2011)

    CAS  Google Scholar 

  6. M. Mohamed, A. El-Maghraby, M.A. EL-Latif, H. Farag, K. Kalaitzidou, Fe-Ni alloy/polyamide 6 nanocomposites: effect of nanocrystalline metal particles on the mechanical and physical properties of the polymer. J. Polym. Res. 20, 137 (2013)

    Article  Google Scholar 

  7. Y.-W. Mai, Z.-Z. Yu, Polymer Nanocomposites (Woodhead Publishing Limited, Cambridge, 2006)

    Book  Google Scholar 

  8. I. Zaman, B. Manshoor, A. Khalid, S. Araby, From clay to graphene for polymer nanocomposites—a survey. J. Polym. Res. 21, 429 (2014)

    Article  Google Scholar 

  9. S. Rahimi-Razin, M. Salami-Kalajahi, V. Haddadi-Asl, H. Roghani-Mamaqani, Effect of different modified nanoclays on the kinetics of preparation and properties of polymer-based nanocomposites. J. Polym. Res. 19, 9954 (2012)

    Article  Google Scholar 

  10. S.-M. Lai, W.-C. Chen, W.W. Zi, Effectiveness of a maleated compatibilizer on the tensile and tear properties of peroxide-cured metallocene polyethylene/clay nanocomposites. J. Polym. Res. 18, 1033–1042 (2011)

    Article  CAS  Google Scholar 

  11. H. Roghani-Mamaqani, V. Haddadi-Asl, M. Salami-Kalajahi, In situ controlled radical polymerization: a review on synthesis ofwell-defined nanocomposites. Polym. Rev. 52, 142–188 (2012)

    Article  CAS  Google Scholar 

  12. M. Salami-Kalajahi, V. Haddadi-Asl, S. Rahimi-Razin, F. Behboodi-Sadabad, M. Najafi, H. Roghani-Mamaqani, A study on theproperties of PMMA/silica nanocomposites prepared via RAFT polymerization. J. Polym. Res. 19, 9793 (2012)

    Article  Google Scholar 

  13. M. Salami-Kalajahi, V. Haddadi-Asl, S. Rahimi-Razin, F. Behboodi-Sadabad, H. Roghani-Mamaqani, M. Hemmati, Investigating the effect of pristine and modified silica nanoparticles on thekinetics of methyl methacrylate polymerization. Chem. Eng. J. 174, 368–375 (2011)

    Article  CAS  Google Scholar 

  14. H. Roghani-Mamaqani, V. Haddadi-Asl, M. Najafi, M. Salami-Kalajahi, Synthesis and characterization of clay dispersed polystyrene nanocomposite via atom transfer radical polymerization. Polym. Compos. 31, 1829–1837 (2010)

    Article  CAS  Google Scholar 

  15. L. Hatami, V. Haddadi-Asl, H. Roghani-Mamaqani, L. Ahmadian-Alam, M. Salami-Kalajahi, Synthesis and characterizationof poly(styrene-co-butyl acrylate)/clay nanocomposite latexes in mini emulsion by AGET ATRP. Polym. Compos. 32, 967–975 (2011)

    Article  CAS  Google Scholar 

  16. S. Sun, H. Zeng, D.B. Robinson, S.P. Raoux, M. Rice, S.X. Wang, G. Li, Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 273–279 (2004)

    Article  CAS  Google Scholar 

  17. C.R. Vestal, Q. Song, Z.J. Zhang, Effects of interparticle interactions upon the magnetic properties of CoFe2O4 and MnFe2O4 nanocrystals. J. Phys. Chem. B 108(47), 18222–18227 (2004)

    Article  CAS  Google Scholar 

  18. R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, R. Yerushalmi-Rozen, Stabilization of individual carbon nanotubes in aqueoussolutions. Nano Lett. 2, 25–28 (2002)

    Article  CAS  Google Scholar 

  19. P.V. Finotelli, M.A. Morales, M.H. Rocha-Le-ao, E.M. Baggio-Saitovitch, A.M. Rossi, Magnetic studies of iron (III) nanoparticles in alginate polymer for drug delivery applications. Mater. Sci. Eng. C 24, 625–629 (2004)

    Article  Google Scholar 

  20. K.I. Draget, C. Taylor, Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll. 25, 251–256 (2011)

    Article  CAS  Google Scholar 

  21. L. Fuks, D. Filipiuk, M. Majdan, Transition metal complexes with alginate biosorbent. J. Mol. Struct. 792–793, 104–109 (2006)

    Article  Google Scholar 

  22. G.T. Grant, E.R. Morris, D.A. Rees, P.J.C. Smith, D. Thom, Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett. 32, 195–198 (1973)

    Article  CAS  Google Scholar 

  23. K. Maaz, A. Mumtaz, S.K. Hasanain, A. Ceylan, Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308(2), 289–295 (2006)

    Article  Google Scholar 

  24. Z. Liu, X. Li, Y. Leng, J. Lian, S. Liu, Z. Xiu, D. Huo, L. Ji-Guang, S. Xudong, Homogeneous precipitation synthesis and magnetic properties of cobalt ferrite nanoparticles. J. Nanomater. 2008, 921654 (2008)

    Google Scholar 

  25. K.K. Siong, Preparation, characterization and properties of core-shell cobalt ferrite/polycaprolactone nanomagnetic biomaterials. Sains Malaysiana 42(2), 167–173 (2018)

    Google Scholar 

  26. C.I. Coaliu, C. Matei, A. Ianculescu, I. Jitaru, D. Berger, Fe3O4 and CoFe2O4 nanoparticles stabilized in sodium alginate polymer. U.P.B Sci. Bull. Ser. B 71(4), 53 (2009)

    Google Scholar 

  27. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Reading, MA, 1978), p. 102

    Google Scholar 

  28. L. Pan, D. Cao, P. Jing, J. Wang, Q. Liu, A novel method to fabricate CoFe2O4/SrFe12O19 composite ferrite nanofibers with enhanced exchange coupling effect. Nanoscale Res. Lett. 10, 131 (2015)

    Article  Google Scholar 

  29. P.M. Tamhankar, A.M. Kulkarni, S.C. Watawe, Functionalization of cobalt ferrite nanoparticles with alginate coating for biocompatible applications. Mater. Sci. Appl. 2, 1317–1321 (2011)

    CAS  Google Scholar 

  30. G.C.P. Leite, E.F. Chagas, R. Pereira, R.J. Prado, A.J. Terezo, M. Alzamora, E. Baggio-Saitovitch, Exchange coupling behavior in bimagnetic CoFe2O4/CoFe2 nanocomposite. J. Magn. Magn. Mater. 324, 2711–2716 (2012)

    Article  CAS  Google Scholar 

  31. F. Liu, S. Laurent, A. Roch, L.V. Elst, R.N. Muller, Size-controlled synthesis of CoFe2O4 nanoparticles potential contrast agent for MRI and investigation on their size-dependent magnetic properties. J. Nanomater. 2013(1), 1–9 (2013)

    Google Scholar 

  32. K. Vasundhara, S.N. Achary, S.K. Deshpande, P.D. Babu, S.S. Meena, A.K. Tyagi, Size dependent magnetic and dielectric properties of nano CoFe2O4 prepared by a salt assisted gel-combustion method. J. Appl. Phys. 113(19), 194101–194110 (2013)

    Article  Google Scholar 

  33. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727 (1955)

    Article  CAS  Google Scholar 

  34. W.B. White, De Angelis, Spectrochim. Acta A 23, 985 (1967)

    Article  CAS  Google Scholar 

  35. G. Allaedini, S.M. Tasirin, P. Aminayi, Magnetic properties of cobalt ferrite synthesized by hydrothermal method. Int. Nano Lett. 5, 183–186 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to show our gratitude to TEQIP II CoE-ES for providing us all the facilities and equipment required for carrying out our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jeyanthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayalakshmi, R., Jeyanthi, J. Synthesis and Structural Characterization of Polymer-Based Cobalt Ferrite Nanocomposite with Core–Shell Structure. J Inorg Organomet Polym 28, 1286–1293 (2018). https://doi.org/10.1007/s10904-018-0821-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0821-z

Keywords

Navigation