Skip to main content
Log in

The adequacy of the observed kinetic order in catalyst and the differential selectivity patterns to the hypothesis of the cooperative mechanism of catalysis of the Suzuki—Miyaura reaction

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The generally accepted mechanism of the Suzuki—Miyaura reaction suggests a sequential activation of the substrate (aryl halide) and the reagent (arylboronic acid) by a palladium catalyst with the formation of unsymmetric biaryl as a result of a single turnover of the catalytic cycle, i.e., it is linear from the kinetic point of view. At the same time, the use of an unconventional kinetic approach based on the analysis of the differential selectivity of the reaction, rather than the regularities of catalytic activity, indicates the inadequacy of the linear mechanism, that is consistent with the hypothesis of a nonlinear (the so-called cooperative) mechanism of catalysis, in which the product is formed as a result of the substrate and reagent activation by two different palladium-containing intermediates in two parallel catalytic cycles. The experimentally observed low kinetic orders of the Suzuki—Miyaura reaction with respect to the concentration of the palladium catalyst precursor under the ligand-free conditions of catalysis are also consistent with the cooperative mechanism and can be due to the changes in the relative amount of the catalyst in two parallel catalytic cycles and/or to the process of catalyst deactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Miyaura, T. Yanagi, A. Suzuki, Synth. Commun., 1981, 11, 513; DOI: https://doi.org/10.1080/00397918108063618.

    Article  CAS  Google Scholar 

  2. G. N. Lipunova, T. G. Fedorchenko, A. N. Tsmokalyuk, O. N. Chupakhin, Russ. Chem. Bull., 2020, 69, 1203; DOI:https://doi.org/10.1007/s11172-020-2892-6.

    Article  CAS  Google Scholar 

  3. I. P. Beletskaya, F. Alonso, V. Tyurin, Coord. Chem. Rev., 2019, 385, 137; DOI: https://doi.org/10.1016/j.ccr.2019.01.012.

    Article  CAS  Google Scholar 

  4. C. Torborg, M. Beller, Adv. Synth. Catal., 2009, 351, 3027; DOI: https://doi.org/10.1002/adsc.200900587.

    Article  CAS  Google Scholar 

  5. L. P. E. Yunker, Z. Ahmadi, J. R. Logan, W. Wu, T. Li, A. Martindale, A. G. Oliver, J. S. McIndoe, Organometallics, 2018, 37, 4297; DOI: https://doi.org/10.1021/acs.organomet.8b00705.

    Article  CAS  Google Scholar 

  6. A. A. Thomas, S. E. Denmark, Science, 2016, 352, 329; DOI:https://doi.org/10.1126/science.aad6981.

    Article  CAS  Google Scholar 

  7. D. B. Eremin, V. P. Ananikov, Coord. Chem. Rev., 2017, 346, 2; DOI: https://doi.org/10.1016/j.ccr.2016.12.021.

    Article  CAS  Google Scholar 

  8. A. Bourouina, V. Meille, C. de Bellefon, Catalysts, 2019, 9, 60; DOI: https://doi.org/10.3390/catal9010060.

    Article  Google Scholar 

  9. A. Biffis, P. Centomo, A. Del Zotto, M. Zecca, Chem. Rev., 2018, 118, 2249; DOI: https://doi.org/10.1021/acs.chemrev.7b00443.

    Article  CAS  Google Scholar 

  10. A. F. Schmidt, A. A. Kurokhtina, E. V. Larina, E. V. Vidyaeva, N. A. Lagoda, Mol. Catal., 2021, 499, 111321; DOI: https://doi.org/10.1016/j.mcat.2020.111321.

    Article  CAS  Google Scholar 

  11. Y. Tan, F. Barrios-Landeros, J. F. Hartwig, J. Am. Chem. Soc., 2012, 134, 3683; DOI: https://doi.org/10.1021/ja2122156.

    Article  CAS  Google Scholar 

  12. D. Wang, Y. Izawa, S. S. Stahl, J. Am. Chem. Soc., 2014, 136, 9914; DOI: https://doi.org/10.1021/ja505405u.

    Article  CAS  Google Scholar 

  13. J. Kim, S. H. Hong, ACS Catal., 2017, 7, 3336; DOI: https://doi.org/10.1021/acscatal.7b00397.

    Article  CAS  Google Scholar 

  14. S. Duric, F. D. Sypaseuth, S. Hoof, E. Svensson, C. C. Tzschucke, Chem. Eur. J., 2013, 19, 17456; DOI: https://doi.org/10.1002/chem.201302118.

    Article  CAS  Google Scholar 

  15. G. C. Bond, R. H. Cunningham, J. Catal., 1997, 166, 172; DOI: https://doi.org/10.1006/jcat.1997.1490.

    Article  CAS  Google Scholar 

  16. J. S. Mathew, M. Klussmann, H. Iwamura, F. Valera, A. Futran, E. A. C. Emanuelsson, D. G. Blackmond, J. Org. Chem., 2006, 71, 4711; DOI: https://doi.org/10.1021/jo052409i.

    Article  CAS  Google Scholar 

  17. J. A. Widegren, R. G. Finke, J. Mol. Cat. A: Chem., 2003, 198, 317; DOI: https://doi.org/10.1016/S1381-1169(02)00728-8.

    Article  CAS  Google Scholar 

  18. O. N. Temkin, Homogeneous Catalysis with Metal Complexes: Kinetic Aspects and Mechanisms, Wiley, Chichester, 2012, 803 pp.

    Book  Google Scholar 

  19. A. F. Schmidt, A. A. Kurokhtina, E. V. Larina, Catal. Sci. Technol., 2014, 4, 3439; DOI: https://doi.org/10.1039/c4cy00479e.

    Article  CAS  Google Scholar 

  20. A. F. Schmidt, A. A. Kurokhtina, E. V. Larina, Kinet. Catal., 2012, 53, 84; DOI: https://doi.org/10.1134/S0023158412010107.

    Article  CAS  Google Scholar 

  21. C. Zhou, R. C. Larock, J. Org. Chem., 2006, 71, 3184; DOI: https://doi.org/10.1021/jo060104d.

    Article  CAS  Google Scholar 

  22. A. F. Schmidt, A. A. Kurokhtina, E. V. Larina, Russ. J. Gen. Chem., 2011, 81, 1573; DOI: https://doi.org/10.1134/S1070363211070334.

    Article  CAS  Google Scholar 

  23. Y. Chen, D.-M. Ma, F.-F. Ba, J. Sun, T. Liu, L. Zhu, M.-D. Zhou, Adv. Synth. Catal., 2016, 358, 2849; DOI: https://doi.org/10.1002/adsc.201600160.

    Article  CAS  Google Scholar 

  24. A. F. Schmidt, A. A. Kurokhtina, E. V. Larina, E. V. Vidyaeva, N. A. Lagoda, J. Organomet. Chem., 2020, 929, 121571; DOI: https://doi.org/10.1016/j.jorganchem.2020.121571.

    Article  CAS  Google Scholar 

  25. J. Xu, A. R. Wilson, A. R. Rathmell, J. Howe, M. Chi, B. J. Wiley, ACSNano, 2011, 5, 6119; DOI: https://doi.org/10.1021/nn201161m.

    CAS  Google Scholar 

  26. J. Ji, Y. Li, W. Fu, Z. Cui, J. Shen, M. Ye, J. Coll. Int. Sci., 2017, 505, 983; DOI: https://doi.org/10.1016/j.jcis.2017.06.013.

    Article  CAS  Google Scholar 

  27. E. Song, J. Wang, T. Li, W. Zhao, M. Liu, Y. Wu, Mol. Catal., 2020, 482, 110671; DOI: https://doi.org/10.1016/j.mcat.2019.110671.

    Article  CAS  Google Scholar 

  28. A. H. M. de Vries, J. M. C. A. Mulders, J. H. M. Mommers, H. J. W. Henderickx, J. G. de Vries, Org. Lett., 2003, 5, 3285; DOI: https://doi.org/10.1021/ol035184b.

    Article  CAS  Google Scholar 

  29. M. T. Reetz and E. Westermann, Angew. Chem., Int. Ed., 2000, 39, 165; DOI: 0570-0833/00/3901-0167.

    Article  CAS  Google Scholar 

  30. A. V. Gaikwad, A. Holuigue, M. B. Thathagar, J. E. ten Elshof, G. Rothenberg, Chem. Eur. J., 2007, 13, 6908; DOI: https://doi.org/10.1002/chem.200700105.

    Article  CAS  Google Scholar 

  31. A. M. Trzeciak, A. W. Augustyniak, Coord. Chem. Rev., 2019, 384, 1; DOI:https://doi.org/10.1016/j.ccr.2019.01.008.

    Article  CAS  Google Scholar 

  32. V. M. Chernyshev, E. A. Denisova, D. B. Eremin, V. P. Ananikov, Chem. Sci., 2020, 11, 6957; DOI:https://doi.org/10.1039/D0SC02629H.

    Article  CAS  Google Scholar 

  33. S. B. Soliev, A. V. Astakhov, D. V. Pasyukov, V. M. Chernyshev, Russ. Chem. Bull., 2020, 69, 683; DOI: https://doi.org/10.1007/s11172-020-2818-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Schmidt.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1657–1664, September, 2021.

This work was financially supported by the Russian Science Foundation (Project No. 19-13-00051). The research was carried out using facilities of the Center for Collective Use of Analytical Eequipment of the Irkutsk State University (http://ckp-rf.ru/ckp/3264/).

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagoda, N.A., Kurokhtina, A.A., Larina, E.V. et al. The adequacy of the observed kinetic order in catalyst and the differential selectivity patterns to the hypothesis of the cooperative mechanism of catalysis of the Suzuki—Miyaura reaction. Russ Chem Bull 70, 1657–1664 (2021). https://doi.org/10.1007/s11172-021-3267-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3267-3

Key words

Navigation