Skip to main content
Log in

Design of SiO2/aminopropylsilane-modified magnetic Fe3O4 nanoparticles for doxorubicin immobilization

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Surface modification of magnetic nanoparticles (MNPs) with tetramethylorthosilicate and 3-aminopropyltrimethoxysilane was studied. The use of N-phosphonomethyliminodiacetic acid for the stabilization of the initial MNPs can significantly increase the coating thickness and specific surface area of SiO2/APS-modified (APS is 3-aminopropylsilane) MNPs. The possibility of sorption of antitumor drug doxorubicin (DOX) on the synthesized nanoparticles was studied. The degree of sorption of DOX increases with an increase in the specific surface area of the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Elkodous, G. S. El-Sayyad, I. Y. Abdelrahman, H. S. El-Bastawisy, A. E. Mohamed, F. M. Mosallam, H. A. Nasser, M. Gobara, A. Baraka, M. A. Elsayed, A. I. El-Batal, Colloids Surf., B, 2019, 180, 411; DOI: https://doi.org/10.1016/j.colsurfb.2019.05.008.

    Article  Google Scholar 

  2. Y. Hu, S. Mignani, J.-P. Majoral, M. Shen, X. Shi, Chem. Soc. Rev., 2018, 47, 1874; DOI: https://doi.org/10.1039/c7cs00657h.

    Article  CAS  Google Scholar 

  3. A. A. Tregubov, P. I. Nikitin, M. P. Nikitin, Chem. Rev., 2018, 118, 10294; DOI: https://doi.org/10.1021/acs.chemrev.7b00660.

    Article  CAS  Google Scholar 

  4. N. D. Thorat, H. E. Townley, R. M. Patil, S. A. M. Tofail, J. Bauer, Drug Discovery Today, 2020, 25, 1245; DOI: https://doi.org/10.1016/j.drudis.2020.04.018.

    Article  CAS  Google Scholar 

  5. R. C. Popescu, E. Andronescu, B. S. Vasile, Nanomaterials, 2019, 9, 1791; DOI: https://doi.org/10.3390/nano9121791.

    Article  CAS  Google Scholar 

  6. C. Miao, F. Hu, Y. Rui, Y. Duan, H. Gu, J. Mater. Chem. B, 2019, 7, 2081; DOI: https://doi.org/10.1039/c9tb00002j.

    Article  CAS  Google Scholar 

  7. A. G. Pershina, O. Ya. Brikunova, A. M. Demin, O. B. Shevelev, I. A. Razumov, E. L. Zavjalov, D. Malkeyeva, E. Kiseleva, N. V. Krakhmal’, S. V. Vtorushin, V. L. Yarnykh, V. V. Ivanov, R. I. Pleshko, V. P. Krasnov, L. M. Ogorodova, Nanomedicine: NBM, 2020, 23, Article 102086; DOI: https://doi.org/10.1016/j.nano.2019.102086.

  8. A. G. Pershina, O. Ya. Brikunova, A. M. Demin, M. A. Abakumov, A. N. Vaneev, V. A. Naumenko, A. S. Erofeev, P. V. Gorelkin, T. R. Nizamov, A. R. Muslimov, A. S. Timin, D. Malkeyeva, E. Kiseleva, S. V. Vtorushin, I. V. Larionova, E. A. Gereng, A. S. Minin, A. M. Murzakaev, V. P. Krasnov, A. G. Majouga, L. M. Ogorodova, Nanomedicine: NBM, 2021, 32, Article 102317; DOI: https://doi.org/10.1016/j.nano.2020.102317.

  9. A. M. Demin, A. G. Pershina, V. V. Ivanov, K. V. Nevskaya, O. B. Shevelev, A. S. Minin, I. V. Byzov, A. E. Sazonov, V. P. Krasnov, L. M. Ogorodova, Int. J. Nanomed., 2016, 11, 4451; DOI: https://doi.org/10.2147/UN.S111880.

    Article  CAS  Google Scholar 

  10. S. Kralj, T. Potrč, P. Kocbek, S. Marchesan, D. Makovec, Curr. Med. Chem., 2017, 24, 454; DOI: https://doi.org/10.2174/0929867323666160813211736.

    Article  CAS  Google Scholar 

  11. Y. Zhang, M. Dang, Y. Tian, Y. Zhu, W. Liu, W. Tian, Y. Su, Q. Ni, C. Xu, N. Lu, J. Tao, Y. Li, S. Zhao, Y. Zhao, Z. Yang, L. Sun, Z. Teng, G. Lu, ACS Appl. Mater. Interfaces, 2017, 9, 30543; DOI: https://doi.org/10.1021/acsami.7b10840.

    Article  CAS  Google Scholar 

  12. F. H. Chen, Q. Gao, J. Z. Ni, Nanotechnology, 2008, 19, 165103; DOI: https://doi.org/10.1088/0957-4484/19/16/165103.

    Article  CAS  Google Scholar 

  13. F.-H. Chen, L.-M. Zhang, Q.-T. Chen, Y. Zhang, Z.-J. Zhang, Chem. Commun., 2010, 46, 8633; DOI: https://doi.org/10.1039/c0cc02577a.

    Article  CAS  Google Scholar 

  14. P.-C. Liang, Y.-C. Chen, C.-F. Chiang, L.-R. Mo, S.-Y. Wei, W.-Y. Hsieh, W.-L. Lin, Int. J. Nanomed., 2016, 11, 2021; DOI: https://doi.org/10.2147/IJN.S94139.

    CAS  Google Scholar 

  15. S. Sadighian, K. Rostamizadeh, H. Hosseini-Monfared, M. Hamidi, Colloids Surf., B, 2014, 117, 406; DOI: https://doi.org/10.1016/j.colsurfb.2014.03.001.

    Article  CAS  Google Scholar 

  16. A. M. Demin, A. V. Mekhaev, O. F. Kandarakov, V. I. Popenko, O. G. Leonova, A. M. Murzakaev, D. K. Kuznetsov, M. A. Uimin, A. S. Minin, V. Ya. Shur, A. V. Belyavsky, V. P. Krasnov, Colloids Surf., B, 2020, 190, 110879; DOI: https://doi.org/10.1016/j.colsurfb.2020.110879.

    Article  CAS  Google Scholar 

  17. A. M. Demin, A. G. Pershina, K. V. Nevskaya, L. V. Efimova, N. N. Shchegoleva, M. A. Uimin, D. K. Kuznetsov, V. Ya. Shur, V. P. Krasnov, L. M. Ogorodova, RCS Adv., 2016, 6, 60196; DOI: https://doi.org/10.1039/C6RA13178F.

    CAS  Google Scholar 

  18. A. M. Demin, A. V. Mekhaev, A. A. Esin, D. K. Kuznetsov, P. S. Zelenovskiy, V. Y. Shur, V. P. Krasnov, Appl. Surf. Sci., 2018, 440, 1196; DOI: https://doi.org/10.1016/j.apsusc.2018.01.147.

    Article  CAS  Google Scholar 

  19. A. M. Demin, A. G. Pershina, A. S. Minin, A. V. Mekhaev, V. V. Ivanov, S. P. Lezhava, A. A. Zakharova, I. V. Byzov, M. A. Uimin, V. P. Krasnov, L. M. Ogorodova, Langmuir, 2018, 34, 3449; DOI: https://doi.org/10.1021/acs.langmuir.7b04023.

    Article  CAS  Google Scholar 

  20. A. M. Demin, M. S. Valova, A. G. Pershina, V. P. Krasnov, Russ. Chem. Bull., 2019, 68, 1088; DOI: https://doi.org/10.1007/s11172-019-2524-1.

    Article  CAS  Google Scholar 

  21. B. I. Kharisov, H. V. R. Dias, O. V. Kharissova, A. V’azquez, Y. Pena, I. Gomez, RSC Adv., 2014, 4, 45354; DOI: https://doi.org/10.1039/c4ra06902a.

    Article  CAS  Google Scholar 

  22. W. Stober, A. Fink, E. Bohn, J. Colloid Interface Sci., 1968, 26, 62; DOI: https://doi.org/10.1016/0021-9797(68)90272-5.

    Article  Google Scholar 

  23. R.-Y. Hong, J.-H. Li, S.-Z. Zhang, H.-Z. Li, Y. Zheng, J.-M. Ding, D.-G. Wei, Appl. Surf. Sci., 2009, 255, 3485; DOI: https://doi.org/10.1016/j.apsusc.2008.09.071.

    Article  CAS  Google Scholar 

  24. N. C. C. Lobato, A. de Mello Ferreira, P. G. Weidler, M. Franzreb, G. C. Silva, M. B. Mansur, Appl. Surf. Sci., 2020, 505, 144565; DOI: https://doi.org/10.1016/j.apsusc.2019.144565.

    Article  CAS  Google Scholar 

  25. G. Simonsen, M. Strand, J. Norrman, G. Oye, Colloids Surf., A, 2019, 568, 147; DOI: https://doi.org/10.1016/j.colsurfa.2019.02.010.

    Article  CAS  Google Scholar 

  26. M. P. Zaytseva, A. G. Muradova, A. I. Sharapaev, E. V. Yurtov, I. S. Grebennikov, A. G. Savchenko, Russ. J. Inorg. Chem. (Int. Ed.), 2018, 63, 1684; DOI: https://doi.org/10.1134/S0036023618120239.

    Article  CAS  Google Scholar 

  27. A. M. Demin, V. P. Krasnov, V. N. Charushin, Mendeleev Commun., 2013, 23, 14; DOI: https://doi.org/10.1016/j.mencom.2013.01.004.

    Article  CAS  Google Scholar 

  28. A. I. Lopez-Lorente, B. Mizaikoff, Trends Anal. Chem., 2016, 84, 97; DOI: https://doi.org/10.1016/j.trac.2019.02.026.

    Article  CAS  Google Scholar 

  29. A. Vargas, I. Shnitko, A. Teleki, S. Weyeneth, S. E. Pratsinis, A. Baiker, Appl. Surf. Sci., 2011, 257, 2861; DOI: https://doi.org/10.1016/j.apsusc.2010.10.081.

    Article  CAS  Google Scholar 

  30. A. M. Demin, A. V. Vakhrushev, A. V. Mekhaev, M. A. Uimin, V. P. Krasnov, Russ. Chem. Bull., 2021, 70, 449.

    Article  CAS  Google Scholar 

  31. H. Arami, A. Khandhar, D. Liggitt, K. M. Krishnan, Chem. Soc. Rev., 2015, 44, 8576; DOI: https://doi.org/10.1039/c5cs00541h.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Demin.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. N. Charushin on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 987–994, May, 2021.

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Project No. 075-15-2020-777) using equipment of the Center for Joint Use “Spectroscopy and Analysis of Organic Compounds” (CJU “SAOC,” I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences) and Ural Center for Joint Use “Modern Nanotechnologies” of the Institute of Natural Sciences and Mathematics (Ural Federal University named after the first President of Russia B. N. Yeltsin).

This work does not involve human participants and animal subjects.

The authors declare that there is no conflict of interest in financial or any other sphere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demin, A.M., Vakhrushev, A.V., Valova, M.S. et al. Design of SiO2/aminopropylsilane-modified magnetic Fe3O4 nanoparticles for doxorubicin immobilization. Russ Chem Bull 70, 987–994 (2021). https://doi.org/10.1007/s11172-021-3177-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3177-4

Key words

Navigation