Skip to main content
Log in

Gold anode corrosion in an aqueous solution of 2,2-dimethyl-1,3-diaminopropane

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The kinetics and mechanism of corrosion of an Au anode in a weakly basic aqueous solution of 2,2-dimethyl-1,3-diaminopropane (2,2-DM-1,3-DAP) were studied by gravimetry and cyclic voltammetry. Scanning and transmission electron microscopy was used to determine that under galvanostatic conditions the products of anode corrosion are reduced on a steel cathode with the formation of not only an electrolytic Au deposition on the cathode, but also colloidal gold nanoparticles in the electrolyte medium. The product of the interaction of 2,2-DM-1,3-DAP with atmospheric CO2, namely, the carbamic acid internal salt 3-ammonio-2,2-dimethyl-propylcarbamate, was isolated from the reaction solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. M. Zhang, G. Senanayake, Miner. Process. Extr. Metall. Rev., 2016, 37, 385.

    Article  CAS  Google Scholar 

  2. S. S. Konyratbekova, A. Baikonurova, A. Akcil, Miner. Process. Extr. Metall. Rev., 2015, 36, 198.

    Article  CAS  Google Scholar 

  3. X. Yang, M. S. Moats, J. D. Mille, Electrochim. Acta, 2010, 55, 3643.

    Article  CAS  Google Scholar 

  4. S. Ye, C. Ishibashi, K. Shimazu, K. Uosaki, J. Electrochem. Soc., 1998, 145, 1614.

    Article  CAS  Google Scholar 

  5. M. Tian, W. G. Pell, B. E. Conway, J. Electroanal. Chem., 2003, 552, 279.

    Article  CAS  Google Scholar 

  6. M. Tian, W. G. Pell, B. E. Conway, Corros. Sci., 2008, 50, 2682.

    Article  CAS  Google Scholar 

  7. S. R. Smith, E. Guerra, S. Siemann, J. L. Shepherd, Electrochim. Acta, 2011, 56, 8291.

    Article  CAS  Google Scholar 

  8. A. P. Simakova, M. D. Vedenyapina, V. V. Kuznetsov, N. N. Makhova, A. A. Vedenyapin, Russ. J. Phys. Chem. A, 2014, 88, 331.

    Article  CAS  Google Scholar 

  9. M. D. Vedenyapina, V. V. Kuznetsov, N. N. Makhova, A. A. Vedenyapin, Russ. J. Phys. Chem. A, 2016, 90, 1903.

    Article  CAS  Google Scholar 

  10. M. D. Vedenyapina, G. Ts. Ubushieva, V. V. Kuznetsov, N. N. Makhova, A. A. Vedenyapin, Russ. J. Phys. Chem. A, 2016, 90, 2312.

    Article  CAS  Google Scholar 

  11. M. D. Vedenyapina, V. V. Kuznetsov, D. I. Rodikova, N. N. Makhova, A. A. Vedenyapin, Mendeleev Commun., 2018, 28, 181.

    Article  CAS  Google Scholar 

  12. M. D. Vedenyapina, V. V. Kuznetsov, N. N. Makhova, D. I. Rodikova, Russ. J. Phys. Chem. A, 2019, 93, 466.

    Article  CAS  Google Scholar 

  13. M. D. Vedenyapina, V. V. Kuznetsov, N. N. Makhova, D. I. Rodikova, Russ. Chem. Bull., 2019, 68, 1997.

    Article  CAS  Google Scholar 

  14. M. D. Vedenyapina, V. V. Kuznetsov, N. N. Makhova, D. I. Rodikova, Russ. Chem. Bull., 2020, 69, 1884.

    Article  CAS  Google Scholar 

  15. V. V. Kachala, L. L. Khemchyan, A. S. Kashin, N. V. Orlov, A. A. Grachev, S. S. Zalesskiy, V. P. Ananikov, Russ. Chem. Rev, 2013, 82, 648.

    Article  Google Scholar 

  16. Bruker. APEX-III, Bruker AXS Inc., Madison (WI), USA, 2019.

  17. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst., 2015, 48, 3; DOI: https://doi.org/10.1107/S1600576714022985.

    Article  CAS  Google Scholar 

  18. G. M. Sheldrick, Acta Crysttallogr., Sect. A: Found. Crysttallogr., 2015, A71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Article  Google Scholar 

  19. G. M. Sheldrick, Acta Crysttallogr., Sect. C, 2015, C71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Google Scholar 

  20. E. Laviron, J. Electroanal. Chem., 1979, 101, 19.

    Article  CAS  Google Scholar 

  21. L. A. Dykman, N. G. Khlebtsov, Russ. Chem. Rev., 2019, 88, 229.

    Article  CAS  Google Scholar 

  22. A. A. Revina, K. F. Chernyshova, N. Yu. Tabachkova, Yu. N. Parhomenko, Russ. Chem. Bull., 2019, 68, 1164.

    Article  CAS  Google Scholar 

  23. R. T. Conley, Infrared Spectroscopy, Allyn and Bacon, Boston, 1966.

    Google Scholar 

  24. A. Finch, P. N. Gates, R. Radcliffe, F. N. Dicson, F. F. Bentley, Chemical Applications of Far Infrared Spectroscopy, Academic Press, New York, London, 1970.

    Google Scholar 

  25. J. Heimgert, D. Neumann, G. J. Reis, Molbank, 2018, M1015; DOI: https://doi.org/10.3390/M1015.

  26. R. N. Salvatore, S. I. Shin, A. S. Nagle, K. W. Jung, J. Org. Chem., 2001, 66, 1035.

    Article  CAS  Google Scholar 

  27. G. Sartori, D. W. Savage, Ind. Eng. Chem. Fundam, 1983, 22, 239.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Vedenyapina.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 735–744, April, 2021.

The authors are grateful to the Department of Structural Research of the N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences for carrying out electron microscopy of the samples.

This work was financially supported of the Science Schools Development Program of the N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences.

The authors declare no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedenyapina, M.D., Kuznetzov, V.V., Dmitrenok, A.S. et al. Gold anode corrosion in an aqueous solution of 2,2-dimethyl-1,3-diaminopropane. Russ Chem Bull 70, 735–744 (2021). https://doi.org/10.1007/s11172-021-3144-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3144-0

Key words

Navigation