Skip to main content
Log in

Rearrangements of polyaza(oxa-,thia-)heterocyclic carbanions in organic synthesis

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The present review is focused on the main transformation routes of sp2- and sp3-hybridized carbanions derived from the compounds containing two or more fused N,O,S-heterocycles. The rearrangement and fragmentation reactions and their applications in the synthesis of poorly available organic compounds are discussed. In the review, separate consideration is given to the reactions leading to a decrease, retention, and increase in the number of annulated heterocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-M. L’Helgoual’ch, A. Seggio, F. Chevallier, M. Yonehara, E. Jeanneau, M. Uchiyama, F. Mongin, J. Org. Chem., 2008, 73, 177; DOI: https://doi.org/10.1021/jo7020345.

    Article  PubMed  CAS  Google Scholar 

  2. L. Marzo, I. Perez, F. Yuste, J. Aleman, J. L. G. Ruano, Chem. Commun., 2015, 51, 346; DOI: https://doi.org/10.1039/c4cc07574a.

    Article  Google Scholar 

  3. Topics in Heterocyclic Chemistry, Eds M. Schnürch, M. D. Mihovilovic, Springer, London, 2013, Vol. 31, 272 pp.; DOI: https://doi.org/10.1007/978-3-642-35022-1.

    Google Scholar 

  4. H. K. Khartabil, P. C. Gros, Y. Fort, M. F. Ruiz-Lopez, J. Am. Chem. Soc., 2010, 132, 2410; DOI: https://doi.org/10.1021/ja910350q.

    Article  CAS  PubMed  Google Scholar 

  5. M. Schlosser, F. Mongin, Chem. Soc. Rev., 2007, 36, 1161; DOI: https://doi.org/10.1039/b706241a.

    Article  CAS  PubMed  Google Scholar 

  6. M. Balkenhohl, P. Knochel, SynOpen, 2018, 2, 78; DOI: https://doi.org/10.1055/s-0036-1591966.

    Article  CAS  Google Scholar 

  7. S. Javed, D. M. Hoffman, Dalton Trans., 2010, 39, 11439; DOI: https://doi.org/10.1039/c0dt00847h.

    Article  CAS  PubMed  Google Scholar 

  8. C. Samann, E. Coya, P. Knochel, Angew. Chem., Int. Ed., 2014, 53, 1430; DOI: https://doi.org/10.1002/anie.201309217.

    Article  CAS  Google Scholar 

  9. K. M. Luedecke, Y. Wang, P. M. Tran, H. L. Threlkeld, P. Wei, Y. Xie, H. F. Schaefer, G. H. Robinson, Organometallics, 2020, 39, 4178; DOI: https://doi.org/10.1021/acs.organomet.0c00201.

    Article  CAS  Google Scholar 

  10. I. Avinash, S. Parveen, G. Anantharaman, Inorg. Chem., 2020, 59, 5646; DOI: https://doi.org/10.1021/acs.inorgchem.0c00348.

    Article  CAS  PubMed  Google Scholar 

  11. F. Bellina, R. Rossi, Adv. Synth. Catal., 2010, 352, 1223; DOI: https://doi.org/10.1002/adsc.201000144.

    Article  CAS  Google Scholar 

  12. M. Mosrin, P. Knochel, Chem. Eur. J., 2009, 15, 1468; DOI: https://doi.org/10.1002/chem.200801831.

    Article  CAS  PubMed  Google Scholar 

  13. K. Groll, S. M. Manolikakes, X. M. du Jourdin, M. Jaric, A. Bredihhin, K. Karaghiosoff, T. Carell, P. Knochel, Angew. Chem., Int. Ed., 2013, 52, 6776; DOI: https://doi.org/10.1002/anie.201301694.

    Article  CAS  Google Scholar 

  14. A. Seggio, F. Chevallier, M. Vaultier, F. Mongin, J. Org. Chem., 2007, 72, 6602; DOI: https://doi.org/10.1021/jo0708341.

    Article  CAS  PubMed  Google Scholar 

  15. F. H. Lutter, L. Grokenberger, L. A. Perego, D. Broggini, S. Lemaire, S. Wagschal, P. Knochel, Nature Commun., 2020, 11, 4443; DOI: https://doi.org/10.1038/s41467-020-18188-z.

    Article  CAS  Google Scholar 

  16. S. H. Wiedemann, M. M. Bio, L. M. Brown, K. B. Hansen, N. F. Langille, Synlett, 2012, 23, 2231; DOI: https://doi.org/10.1055/s-0032-1316737.

    Article  CAS  Google Scholar 

  17. J. Y. F. Wong, A. Lewandowska, B. R. Trowse, G. Barker, Org. Lett., 2019, 21, 7069; DOI: https://doi.org/10.1021/acs.orglett.9b02633.

    Article  CAS  PubMed  Google Scholar 

  18. S. M. Ivanov, J. Heterocycl. Chem., 2020, 57, 3510; DOI: https://doi.org/10.1002/jhet.4071.

    Article  CAS  Google Scholar 

  19. Topics in Heterocyclic Chemistry, Eds B. U. W. Maes, G. W. Gribble, Springer, London, 2012, Vol. 29, 445 pp.; DOI: https://doi.org/10.1007/978-3-642-31791-0.

    Google Scholar 

  20. R. Chinchilla, C. Nájera, M. Yus, ARKIVOC, 2007, Part x, 152; DOI: https://doi.org/10.3998/ark.5550190.0008.a13.

  21. S. B. Mogensen, M. K. Taylor, J.-W. Lee, Molecules, 2020, 25, 5950; DOI:https://doi.org/10.3390/molecules25245950.

    Article  CAS  PubMed Central  Google Scholar 

  22. Science of Synthesis: Houben-Weyl Methods of Molecular Transformations, Eds M. Majewski, V. Snieckus, M. A. Y. Astiz, Georg Thieme Verlag, New York, 2005, Vol. 8a, 952 pp.

    Google Scholar 

  23. B. Haag, M. Mosrin, H. Ila, V. Malakhov, P. Knochel, Angew. Chem., Int. Ed., 2011, 50, 9794; DOI: https://doi.org/10.1002/anie.201101960.

    Article  CAS  Google Scholar 

  24. G. A. El-Hiti, K. Smith, A. S. Hegazy, M. B. Alshammari, A. M. Masmali, ARKIVOC, 2015, Part iv, 19; DOI: https://doi.org/10.24820/ark.5550190.p008.744.

  25. Y. Fort, C. Comoy, in Lithium Compounds in Organic Synthesis, Eds R. Luisi, V. Capriati, Wiley-VCH, Weinheim, 2014, pp. 423–462; DOI: https://doi.org/10.1002/9783527667512.ch15.

  26. E. A. Chugunova, A. S. Gazizov, A. R. Burilov, L. M. Yusupova, M. A. Pudovik, O. G. Sinyashin, Russ. Chem. Bull., 2019, 68, 887; DOI: https://doi.org/10.1007/s11172-019-2503-6.

    Article  CAS  Google Scholar 

  27. L. Bischoff, in Comprehensive Heterocyclic Chemistry III, Eds A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor, Elsevier, Oxford, 2008, pp. 589–627; DOI: https://doi.org/10.1016/B978-008044992-0.01013-0.

  28. V. Gayakhe, Y. S. Sanghvi, I. J. S. Fairlamb, A. R. Kapdi, Chem. Commun., 2015, 51, 11944; DOI: https://doi.org/10.1039/c5cc03416g.

    Article  CAS  Google Scholar 

  29. Yu. G. Shtyrlin, A. S. Petukhov, A. D. Strelnik, N. V. Shtyrlin, A. G. Iksanova, M. V. Pugachev, R. S. Pavelyev, M. S. Dzyurkevich, M. R. Garipov, K. V. Balakin, Russ. Chem. Bull., 2019, 68, 911; DOI: https://doi.org/10.1007/s11172-019-2504-5].

    Article  CAS  Google Scholar 

  30. V. N. Charushin, O. N. Chupakhin, Russ. Chem. Bull., 2019, 68, 453; DOI: https://doi.org/10.1007/s11172-019-2441-3.

    Article  CAS  Google Scholar 

  31. N. N. Makhova, L. I. Belen’kii, G. A. Gazieva, I. L. Dalinger, L. S. Konstantinova, V. V. Kuznetsov, A. N. Kravchenko, M. M. Krayushkin, O. A. Rakitin, A. M. Starosotnikov, L. L. Fershtat, S. A. Shevelev, V. Z. Shirinian, V. N. Yarovenko, Russ. Chem. Rev., 2020, 89, 55; DOI: https://doi.org/10.1070/RCR4914.

    Article  CAS  Google Scholar 

  32. L.-H. Chung, S.-W. Ng, C.-F. Yeung, H.-L. Shek, S.-Y. Tse, H.-S. Lo, S.-C. Chan, M.-K. Tse, S.-M. Yiu, C.-Y. Wong, Dalton Trans., 2018, 47, 12838; DOI: https://doi.org/10.1039/C8DT02408A.

    Article  CAS  PubMed  Google Scholar 

  33. T. D. Lash, Macroheterocycles, 2008, 1, 9.

    Article  CAS  Google Scholar 

  34. S. A. Al-Jibori, H. M. Gergees, M. S. Al-Rubaye, S. Basak-Modi, S. Ghosh, H. Schmidt, M. Laguna, M. A. Luquin, G. Hogarth, Inorg. Chim. Acta, 2016, 450, 50; DOI: https://doi.org/10.1016/j.ica.2016.04.046.

    Article  CAS  Google Scholar 

  35. G. Albertin, S. Antoniutti, M. Bortoluzzi, J. Castro, F. Sibilla, E. Trave, New J. Chem., 2017, 41, 12976; DOI: https://doi.org/10.1039/c7nj02224g.

    Article  CAS  Google Scholar 

  36. C. G. Neochoritis, T. Zhao, A. Dömling, Chem. Rev., 2019, 119, 1970; DOI: https://doi.org/10.1021/acs.chemrev.8b00564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. L. Cuesta, D. Gross, V. M. Lynch, Z. Ou, W. Kajonkijya, K. Ohkubo, S. Fukuzumi, K. M. Kadish, J. L. Sessler, J. Am. Chem. Soc., 2007, 129, 11696; DOI: https://doi.org/10.1021/ja075613r.

    Article  CAS  PubMed  Google Scholar 

  38. Á. Vivancos, C. Segarra, M. Albrecht, Chem. Rev., 2018, 118, 9493; DOI: https://doi.org/10.1021/acs.chemrev.8b00148.

    Article  CAS  PubMed  Google Scholar 

  39. J. Pan, J. Wang, M. M. B. Holl, J. W. Kampf, A. J. Ashe, Organometallics, 2006, 25, 3463; DOI: https://doi.org/10.1021/om060239+.

    Article  CAS  Google Scholar 

  40. T. R. Helgert, C. E. Webster, T. K. Hollis, H. U. Valle, P. Hillesheim, A. G. Oliver, Inorg. Chim. Acta, 2018, 469, 164; DOI: https://doi.org/10.1016/j.ica.2017.08.050.

    Article  CAS  Google Scholar 

  41. N. V. Onvamboko, R. Weber, A. Fauconnier, A. Renson, Bull. Soc. Chim. Belg., 1983, 92, 53; DOI: https://doi.org/10.1002/bscb.19830920108.

    Article  Google Scholar 

  42. B. Hill, M. De Vleeschauwer, K. Houde, M. Belley, Synlett, 1998, 407; DOI: https://doi.org/10.1055/s-1998-1674.

  43. L. S. Fuller, B. Iddon MP, K. A. Smith, Chem. Commun., 1997, 2355; DOI: https://doi.org/10.1039/A707033K.

  44. R. Hull, P. J. van den Broek, M. L. Swain, J. Chem. Soc., Perkin Trans. 1, 1975, 2271; DOI: https://doi.org/10.1039/P19750002271.

  45. I. Iijima, K. C. Rice, J. Heterocycl. Chem., 1978, 15, 1527; DOI: https://doi.org/10.1002/jhet.5570150863.

    Article  CAS  Google Scholar 

  46. H. Reimlinger, W. R. F. Lingier, J. J. M. Vandewalle, R. Merényi, Chem Ber., 1971, 104, 3965; DOI: https://doi.org/10.1002/cber.19711041227.

    Article  CAS  Google Scholar 

  47. H. Reimlinger, W. R. F. Lingier, J. J. M. Vandewalle, Chem. Ber., 1971, 104, 3940; DOI: https://doi.org/10.1002/cber.19711041223.

    Article  CAS  Google Scholar 

  48. S. M. Ivanov, A. M. Shestopalov, J. Heterocycl. Chem., 2019, 56, 2210; DOI: https://doi.org/10.1002/jhet.3615.

    Article  CAS  Google Scholar 

  49. S. M. Ivanov, A. O. Dmitrienko, M. G. Medvedev, L. M. Mironovich, J. Organomet. Chem., 2019, 896, 168; DOI: https://doi.org/10.1016/j.jorganchem.2019.06.009.

    Article  CAS  Google Scholar 

  50. S. M. Ivanov, Tetrahedron Lett., 2020, 61, 152404; DOI: https://doi.org/10.1016/j.tetlet.2020.152404.

    Article  CAS  Google Scholar 

  51. S. Shiotani, H. Morita, J. Heterocycl. Chem., 1992, 29, 413; DOI: https://doi.org/10.1002/jhet.5570290221.

    Article  CAS  Google Scholar 

  52. R. L. Meline, R. L. Elsenbaumer, Synthesis, 1997, 617; DOI: https://doi.org/10.1055/s-1997-1407.

  53. R. L. Meline, R. L. Elsenbaumer, J. Chem. Soc., Perkin Trans. 1, 1998, 2467; DOI: https://doi.org/10.1039/A805226C.

  54. R. Andreu, J. Gar’in, J. Orduna, J. M. Royo, Tetrahedron Lett., 2001, 42, 875; DOI: https://doi.org/10.1016/S0040-4039(00)02147-X.

    Article  CAS  Google Scholar 

  55. D. Liu, S. A. Kozmin, Angew. Chem., Int. Ed., 2001, 40, 4757; DOI: https://doi.org/10.1002/1521-3773(20011217)40:24<4757::AID-ANIE4757>3.0.CO;2-S.

    Article  CAS  Google Scholar 

  56. P. O’Brien, C. D. Pilgram, Org. Biomol. Chem., 2003, 1, 523; DOI: https://doi.org/10.1039/B210608F.

    Article  PubMed  CAS  Google Scholar 

  57. D. M. Hodgson, C. D. Bray, P. G. Humphreys, Synlett, 2006, 1, 1; DOI: https://doi.org/10.1055/s-2005-921925.

    Article  CAS  Google Scholar 

  58. D. M. Hodgson, C. R. Maxwell, I. R. Matthews, Tetrahedron: Asymmetry, 1999, 10, 1847; DOI: https://doi.org/10.1016/S0957-4166(99)00168-8.

    Article  CAS  Google Scholar 

  59. D. M. Hodgson, C. R. Maxwell, I. R. Matthews, Synlett, 1998, 1349; DOI: https://doi.org/10.1055/s-1998-1963.

  60. M. Suzuki, K. Tomooka, Synlett, 2004, 4, 651; DOI: https://doi.org/10.1055/s-2004-817772.

    Google Scholar 

  61. S. Carini, V. Cerè, F. Peri, S. Pollicino, Synthesis, 2000, 1756; DOI: https://doi.org/10.1055/s-2000-8206.

  62. M. Carpintero, C. Jaramillo, A. Fernandez-Mayoralas, Eur. J. Org. Chem., 2000, 1285; DOI: https://doi.org/10.1002/1099-0690(200004)2000:7<1285::AID-EJOC1285>3.0.CO;2-Z.

  63. C. J. Nichols, N. S. Simpkins, Tetrahedron Lett., 2004, 45, 7469; DOI: https://doi.org/10.1016/j.tetlet.2004.08.058.

    Article  CAS  Google Scholar 

  64. D. Moffat, C. J. Nichols, D. A. Riley, N. S. Simpkins, Org. Biomol. Chem., 2005, 3, 2953; DOI: https://doi.org/10.1039/B506444A.

    Article  CAS  PubMed  Google Scholar 

  65. A. Ishii, T. Nakaniwa, K. Umezawa, J. Nakayama, Tetrahedron, 1999, 55, 10341; DOI: https://doi.org/10.1016/S0040-4020(99)00589-X.

    Article  CAS  Google Scholar 

  66. S. Hanessian, B. Deschenes-Simard, D. Simard, Tetrahedron, 2009, 65, 6656; DOI: https://doi.org/10.1016/j.tet.2009.06.033.

    Article  CAS  Google Scholar 

  67. D. Moderhack, D.-O. Bode, D. Schomburg, Chem. Ber., 1993, 126, 129; DOI: https://doi.org/10.1002/cber.19931260120.

    Article  CAS  Google Scholar 

  68. R. F. Fibiger, A. R. Banks, T. Jones, R. C. Haltiwanger, D. S. Watt, J. Heterocycl. Chem., 1978, 15, 307; DOI: https://doi.org/10.1002/jhet.5570150225.

    Article  CAS  Google Scholar 

  69. J. Sisko, A. J. Kassick, S. B. Shetzline, Org. Lett., 2000, 2, 2877; DOI: https://doi.org/10.1021/ol006302n.

    Article  CAS  PubMed  Google Scholar 

  70. N. N. Volkova, E. V. Tarasov, M. I. Kodess, W. Dehaen, V. A. Bakulev, Mendeleev Commun., 2002, 12, 131; DOI: https://doi.org/10.1070/MC2002v012n04ABEH001625.

    Article  CAS  Google Scholar 

  71. T. L. Gilchrist, D. Hughes, W. Stretch, E. J. T. Chrystal, J. Chem. Soc., Perkin Trans. 1, 1987, 2505; DOI: https://doi.org/10.1039/P19870002505.

  72. B. Furman, S. Molotov, R. Thürmer, Z. Kałuża, W. Voelter, M. Chmielewski, Tetrahedron, 1997, 53, 5883; DOI: https://doi.org/10.1016/S0040-4020(97)00248-2.

    Article  CAS  Google Scholar 

  73. T. E. Gunda, G. N. Szöke, Tetrahedron, 1998, 54, 6565; DOI: https://doi.org/10.1016/S0040-4020(98)00316-0.

    Article  CAS  Google Scholar 

  74. J. C. Hinshaw, J. Org. Chem., 1975, 40, 47; DOI: https://doi.org/10.1021/jo00889a010.

    Article  CAS  Google Scholar 

  75. O. De Lucchi, P. Maglioli, G. Delogu, G. Valle, Synlett, 1991, 841; DOI: https://doi.org/10.1055/s-1991-20898.

  76. D. M. Hodgson, I. D. Cameron, M. Christlieb, R. Green, G. P. Lee, L. A. Robinson, J. Chem. Soc., Perkin Trans. 1, 2001, 2161; DOI: https://doi.org/10.1039/B105369H.

  77. D. M. Hodgson, L. A. Robinson, Chem. Commun., 1999, 309; DOI: https://doi.org/10.1039/A809105F.

  78. M. Schnurch, M. Spina, A. F. Khan, M. D. Mihovilovic, P. Stanetty, Chem. Soc. Rev., 2007, 36, 1046; DOI: https://doi.org/10.1039/b607701n.

    Article  PubMed  Google Scholar 

  79. A. J. Guildford, M. A. Tometzki, R. W. Turner, Synthesis, 1983, 987; DOI: https://doi.org/10.1055/s-1983-30593.

  80. J. M. Chezal, E. Moreau, O. Chavignon, C. Lartigue, Y. Blache, J. C. Teulade, Tetrahedron, 2003, 59, 5869; DOI: https://doi.org/10.1016/S0040-4020(03)00938-4.

    Article  CAS  Google Scholar 

  81. J. Frey, A. D. Bond, A. B. Holmes, Chem. Commun., 2002, 2424; DOI: https://doi.org/10.1039/B207403F.

  82. M. Miyasaka, A. Rajca, J. Org. Chem., 2006, 71, 3264; DOI: https://doi.org/10.1021/jo060038f.

    Article  CAS  PubMed  Google Scholar 

  83. K. Kato, H. Hayakawa, H. Tanaka, H. Kumamoto, T. Miyasaka, Tetrahedron Lett., 1995, 36, 6507; DOI: https://doi.org/10.1016/0040-4039(95)01302-X.

    Article  CAS  Google Scholar 

  84. K. Kato, H. Hayakawa, H. Tanaka, H. Kumamoto, S. Shindoh, S. Shuto, T. Miyasaka, J. Org. Chem., 1997, 62, 6833; DOI: https://doi.org/10.1021/jo970398q.

    Article  CAS  Google Scholar 

  85. K.-I. Tanji, H. Kato, T. Higashino, Chem. Pharm. Bull., 1991, 39, 2793; DOI: https://doi.org/10.1248/cpb.39.2793.

    Article  CAS  Google Scholar 

  86. B. Abarca, R. Ballesteros, M. Elmasnaouy, Tetrahedron, 1998, 54, 15287; DOI: https://doi.org/10.1016/S0040-4020(98)00955-7.

    Article  CAS  Google Scholar 

  87. B. Abarca, R. Ballesteros, M. Elmasnaouy, ARKIVOC, 2002, Part vi, 145; DOI: https://doi.org/10.3998/ark.5550190.0003.613.

  88. S. M. Ivanov, J. K. Voronina, A. N. Fakhrutdinov, A. M. Shestopalov, J. Fluorine Chem., 2019, 220, 16; DOI: https://doi.org/10.1016/j.jfluchem.2019.02.004.

    Article  CAS  Google Scholar 

  89. S. M. Ivanov, M. E. Minyaev, J. Organomet. Chem., 2020, 906, 121060; DOI: https://doi.org/10.1016/j.jorganchem.2019.121060.

    Article  CAS  Google Scholar 

  90. E. Meyle, P. Schwenkkraus, M. Zsigmondy, H.-H. Otto, Arch. Pharm., 1989, 322, 17; DOI: https://doi.org/10.1002/ardp.19893220105.

    Article  CAS  Google Scholar 

  91. M. Zhan, S. Zhang, Z. Huang, Z. Xi, Org. Lett., 2015, 17, 1026; DOI: https://doi.org/10.1021/acs.orglett.5b00136.

    Article  CAS  PubMed  Google Scholar 

  92. O. Miyata, R. R. Schmidt, Angew. Chem., Int. Ed. Engl., 1982, 21, 637; DOI: https://doi.org/10.1002/anie.198206371.

    Article  Google Scholar 

  93. Z. Huang, M. Zhan, S. Zhang, Q. Luo, W.-X. Zhang, Z. Xi, Org. Chem. Front., 2017, 4, 1785; DOI: https://doi.org/10.1039/C7QO00287D.

    Article  CAS  Google Scholar 

  94. L. R. Takaoka, A. J. Buckmelter, T. E. LaCruz, S. D. Rychnovsky, J. Am. Chem. Soc., 2005, 127, 528; DOI: https://doi.org/10.1021/ja044642o.

    Article  CAS  PubMed  Google Scholar 

  95. E. Roulland, F. Cecchin, H.-P. Husson, J. Org. Chem., 2005, 70, 4474; DOI: https://doi.org/10.1021/jo050258d.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Ivanov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 647–664, April, 2021.

This paper does not contain descriptions of studies on animals or humans.

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, S.M. Rearrangements of polyaza(oxa-,thia-)heterocyclic carbanions in organic synthesis. Russ Chem Bull 70, 647–664 (2021). https://doi.org/10.1007/s11172-021-3133-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3133-3

Key words

Navigation