Skip to main content
Log in

Selective catalytic reduction of nitrogen oxides by ammonia over the dual-zone FeBeta∥MnCe/FeBeta catalyst

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The properties of the FeBeta zeolite catalyst, MnCe/FeBeta composite catalyst, and FeBeta∥MnCe/FeBeta dual-zone catalytic system were studied in the selective catalytic reduction of nitrogen oxides with ammonia. The combination of the low-temperature (MnCe/FeBeta) and high-temperature (FeBeta) catalysts makes it possible to significantly improve the efficiency of NOx removal in a wide temperature range (200–500 °C) in the presence of the FeBeta∥MnCe/FeBeta system. It was found that this system also demonstrates high activity in the catalytic oxidation of residual ammonia retaining high selectivity in molecular nitrogen formation even under ammonia excess conditions (NH3: NO > 1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Kirillov, E. I. Smirnov, Yu. I. Amosov, A. S. Bobrin, V. D. Belyaev, V. A. Sobyanin, Kinet. Katal., 2009, 50, 22 [Kinet. Catal. (Engl. Transl.), 2009, 50]; DOI: https://doi.org/10.1134/S0023158409010030.

    Article  Google Scholar 

  2. R. Villamaina, I. Nova, E. Tronconi, T. Maunula, M. Keenan, Emission Contr. Sci. Technol., 2019, 5, 290; DOI: https://doi.org/10.1007/s40825-019-00140-3.

    Article  CAS  Google Scholar 

  3. M. Zhang, B. Huang, H. Jiang, Y. Chen, Front. Chem. Sci. Eng., 2017, 11, 594; DOI: https://doi.org/10.1007/s11705-017-1668-5.

    Article  CAS  Google Scholar 

  4. D. E. Doronkin, L. V. Piryutko, E. V. Starokon’, G. I. Panov, A. Yu. Stakheev, Kinet. Katal., 2012, 53, 796 [Kinet. Catal. (Engl. Transl.), 2012, 53]; DOI: https://doi.org/10.1134/S0023158412050060.

    Article  Google Scholar 

  5. H. Wang, B. Huang, C. Yu, M. Lu, H. Huang, Y. Zhou, Appl. Catal. A: Gen., 2019, 588, 117207; DOI: https://doi.org/10.1016/j.apcata.2019.117207.

    Article  CAS  Google Scholar 

  6. N. Martín, P. N. R. Vennestram, J. R. Thøgersen, M. Moliner, A. Corma, Chem. A Eur. J., 2017, 23, 13404; DOI: https://doi.org/10.1002/chem.201701742.

    Article  Google Scholar 

  7. Y. J. Kim, H. J. Kwon, I. Heo, I.-S. Nam, B. K. Cho, J. W. Choung, M.-S. Cha, G. K. Yeo, Appl. Catal. B: Env., 2012, 126, 9; DOI: https://doi.org/10.1016/j.apcatb.2012.06.010.

    Article  CAS  Google Scholar 

  8. D. S. Kryvoruchenko, A. V. Kucherov, N. S. Telegina, D. A. Bokarev, P. Selvam, A. Yu. Stakheev, Russ. Chem. Bull., 2014, 63, 389; DOI: https://doi.org/10.1007/s11172-014-0442-9.

    Article  Google Scholar 

  9. G. Zhou, B. Zhong, W. Wang, X. Guan, B. Huang, D. Ye, H. Wu, Catal. Today, 2011, 175, 157; DOI: https://doi.org/10.1016/j.cattod.2011.06.004.

    Article  CAS  Google Scholar 

  10. D. S. Kryvoruchenko, N. S. Telegina, D. A. Bokarev, A. Yu. Stakheev, Kinet. Katal., 2015, 56, 729 [Kinet. Catal. (Engl. Transl.), 2015, 56]; DOI: https://doi.org/10.1134/S0023158415060051.

    Google Scholar 

  11. A. Yu. Stakheev, G. N. Baeva, G. O. Bragina, N. S. Teleguina, A. L. Kustov, M. Grill, J. R. Thogersen, Top. Catal., 2013, 56, 427; DOI: https://doi.org/10.1007/s11244-013-9991-7.

    Article  CAS  Google Scholar 

  12. M. M. J. Treacy, J. B. Higgins, Collection of Simulated XRD Power Patterns for Zeolite, Elsevier, Amsterdam, 2001, p. 78.

    Book  Google Scholar 

  13. I. Nova, E. Tronconi, Urea-SCR Technology for deNOx after Treatment of Diesel Exhaust, Springer, New York, 2014, p. 129.

    Book  Google Scholar 

  14. M. Yang, G. Shen, M. Liu, Y. Chen, Z. Wang, Q. Wang, Nanomaterials, 2019, 9, 197; DOI: https://doi.org/10.3390/nano9020197.

    Article  CAS  Google Scholar 

  15. X. Lou, P. Liu, J. Li, Z. Li, K. He, Appl. Surf. Sci., 2014, 307, 382; DOI: https://doi.org/10.1016/j.apsusc.2014.04.041.

    Article  CAS  Google Scholar 

  16. J. Liu, C. Yu, P. Zhao, G. Chen, Appl. Surf. Sci., 2012, 258, 9096; DOI: https://doi.org/10.1016/j.apsusc.2012.06.022.

    Article  CAS  Google Scholar 

  17. T. N. Afonasenko, O. A. Bulavchenko, O. A. Knyazheva, O. N. Baklanova, T. I. Gulyaeva, M. V. Trenikhin, S. V. Tsybulya, P. G. Tsyrul’nikov, Kinet. Katal., 2015, 56, 359 [Kinet. Catal. (Engl. Transl.), 2015, 56]; DOI: https://doi.org/10.1134/S0023158415030015.

    Article  CAS  Google Scholar 

  18. Z. Wang, G. Shen, J. Li, H. Liu, Q. Wang, Y. Chen, Appl. Catal. B: Environ., 2013, 138–139, 253; DOI: https://doi.org/10.1016/j.apcatb.2013.02.030

    Article  Google Scholar 

  19. M. A. Langell, C. W. Hutchings, G. A. Carson, M. H. Nassir, J. Vac. Sci. Technol. A, 1996, 14, 1656; DOI: https://doi.org/10.1116/1.580314.

    Article  CAS  Google Scholar 

  20. E. A. Soares, R. Paniago, V. E. de Carvalho, E. L. Lopes, G. J. P. Abreu, H. D. Pfannes, Phys. Rev. B, 2006, 73, 035419; DOI: https://doi.org/10.1103/PhysRevB.73.035419.

    Article  Google Scholar 

  21. M. A. Stranick, Surf. Sci. Spectra, 1999, 6, 39; DOI: https://doi.org/10.1116/1.1247889.

    Article  CAS  Google Scholar 

  22. M. A. Stranick, Surf. Sci. Spectra, 1999, 6, 31; DOI: https://doi.org/10.1116/1.1247888.

    Article  CAS  Google Scholar 

  23. E. S. Ilton, J. E. Post, P. J. Heaney, F. T. Ling, S. N. Kerisit, Appl. Surf. Sci., 2016, 366, 475; DOI: https://doi.org/10.1016/j.apsusc.2015.12.159.

    Article  CAS  Google Scholar 

  24. D. R. Mullins, S. H. Overbury, D. R. Huntley, Surf. Sci., 1998, 409, 307; DOI: https://doi.org/10.1016/S0039-6028(98)00257-X.

    Article  CAS  Google Scholar 

  25. E. Abi-aad, R. Bechara, J. Grimblot, A. Aboukais, Chem. Mater., 1993, 5, 793; DOI: https://doi.org/10.1021/cm00030a013.

    Article  CAS  Google Scholar 

  26. J. Shao, S. Cheng, Z. Li, B. Huang, Catalysts, 2020, 10, 311; DOI: https://doi.org/10.3390/catal10030311.

    Article  CAS  Google Scholar 

  27. X. Wu, H. Yu, D. Weng, S. Liu, J. Fan, J. Rare Earths, 2013, 31, 1141; DOI: https://doi.org/10.1016/S1002-0721(12)60418-9.

    Article  CAS  Google Scholar 

  28. R. Nedyalkova, K. Kamasamudram, N. W. Currier, J. Li, A. Yezerets, L. Olsson, J. Catal., 2013, 299, 101; DOI: https://doi.org/10.1016/j.jcat.2012.11.009.

    Article  CAS  Google Scholar 

  29. H. Sjövall, R. J. Blint, A. Gopinath, L. A. Olsson, Ind. Eng. Chem. Res., 2009, 49, 39; DOI: https://doi.org/10.1021/ie9003464.

    Article  Google Scholar 

  30. D. E. Doronkin, A. Yu. Stakheev, A. V. Kucherov, N. N. Tolkachev, M. Kustova, M. Høj, G. N. Baeva, G. O. Bragina, P. Gabrielsson, I. Gekas, S. Dahl, Top. Catal., 2009, 52, 1728; DOI: https://doi.org/10.1007/s11244-009-9327-9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Mytareva.

Additional information

The authors are grateful to K. I. Maslakov (M. V. Lomonosov Moscow State University) for the XPS study of the samples.

Scientific Schools Development Program by N. D. Zelinsky Institute of Organic Chemistry (Russian Academy of Sciences) is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mytareva, A.I., Bokarev, D.A., Baeva, G.N. et al. Selective catalytic reduction of nitrogen oxides by ammonia over the dual-zone FeBeta∥MnCe/FeBeta catalyst. Russ Chem Bull 69, 2274–2280 (2020). https://doi.org/10.1007/s11172-020-3043-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-3043-9

Key words

Navigation