Skip to main content
Log in

Metal-ligand bond dissociation energies in the Ni, Pd, and Pt complexes with N-heterocyclic carbenes: effect of the oxidation state of the metal (0, +2)

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A DFT study was carried out of how the nature of metal, the oxidation state of the metal (0 and +2), as well as the structures of N-heterocyclic carbene (NHC) and other ligands influence the heterolytic dissociation energies of the metal-ligand bond in the complexes M-NHC (M = Ni, Pd, Pt). It was shown that a change in the oxidation state of the metal can be followed by a considerable change in the M-NHC bond dissociation energy (up to nearly 21 kcal mol−1), which is also strongly influenced by the ligand in the trans-position to NHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Díez-González, N. Marion, S. P. Nolan, Chem. Rev., 2009, 109, 3612.

    Article  PubMed  CAS  Google Scholar 

  2. M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature, 2014, 510, 485.

    Article  CAS  PubMed  Google Scholar 

  3. R. D. J. Froese, C. Lombardi, M. Pompeo, R. P. Rucker, M. G. Organ, Acc. Chem. Res., 2017, 50, 2244.

    Article  CAS  PubMed  Google Scholar 

  4. N. Hazari, P. R. Melvin, M. M. Beromi, Nat. Rev. Chem., 2017, 1, 0025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. I. E. Chikunov, G. S. Ranny, A. V. Astakhov, V. A. Tafeenko, V. M. Chernyshev, Russ. Chem. Bull., 2018, 67, 2003.

    Article  CAS  Google Scholar 

  6. S. B. Soliev, A. V. Astakhov, D. V. Pasyukov, V. M. Chernyshev, Russ. Chem. Bull., 2020, 69, 683.

    Article  CAS  Google Scholar 

  7. R. Visbal, M. C. Gimeno, Chem. Soc. Rev., 2014, 43, 3551.

    Article  CAS  PubMed  Google Scholar 

  8. T. Fleetham, G. Li, J. Li, Adv. Mater., 2017, 29, 1601861.

    Article  CAS  Google Scholar 

  9. M. Elie, J. L. Renaud, S. Gaillard, Polyhedron, 2018, 140, 158.

    Article  CAS  Google Scholar 

  10. L. Oehninger, R. Rubbiani, I. Ott, Dalton Trans., 2013, 42, 3269.

    Article  CAS  PubMed  Google Scholar 

  11. W. Liu, R. Gust, Coord. Chem. Rev., 2016, 329, 191.

    Article  CAS  Google Scholar 

  12. T. Zou, C.-N. Lok, P.-K. Wan, Z.-F. Zhang, S.-K. Fung, C.-M. Che, Curr. Opin. Chem. Biol., 2018, 43, 30.

    Article  CAS  PubMed  Google Scholar 

  13. W. A. Herrmann, Angew. Chem., Int. Ed., 2002, 41, 1290.

    Article  CAS  Google Scholar 

  14. K. J. Cavell, A. T. Normand, in N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis, Ed. C. S. J. Cazin, Springer Netherlands, Dordrecht, 2011, p. 299.

  15. B. R. M. Lake, M. R. Chapman, C. E. Willans, in Organometallic Chemistry, Royal Society of Chemistry, 2016, vol. 40, p. 107.

  16. D. J. Nelson, J. M. Praetorius, C. M. Crudden, in N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools, Royal Society of Chemistry, London, 2017, p. 46.

    Google Scholar 

  17. A. V. Astakhov, O. V. Khazipov, E. S. Degtyareva, V. N. Khrustalev, V. M. Chernyshev, V. P. Ananikov, Organometallics, 2015, 34, 5759.

    Article  CAS  Google Scholar 

  18. E. G. Gordeev, D. B. Eremin, V. M. Chernyshev, V. P. Ananikov, Organometallics, 2018, 37, 787.

    Article  CAS  Google Scholar 

  19. A. Astakhov, S. Soliev, E. Gordeev, V. Chernyshev, V. Ananikov, Dalton Trans., 2019, 48, 17052.

    Article  CAS  PubMed  Google Scholar 

  20. V. M. Chernyshev, A. V. Astakhov, I. E. Chikunov, R. V. Tyurin, D. B. Eremin, G. S. Ranny, V. N. Khrustalev, V. P. Ananikov, ACS Catal., 2019, 9, 2984.

    Article  CAS  Google Scholar 

  21. A. Y. Chernenko, D. V. Pasyukov, A. V. Astakhov, V. A. Tafeenko, V. M. Chernyshev, Russ. Chem. Bull., 2018, 67, 1196.

    Article  CAS  Google Scholar 

  22. V. M. Chernyshev, O. V. Khazipov, M. A. Shevchenko, A. Y. Chernenko, A. V. Astakhov, D. B. Eremin, D. V. Pasyukov, A. S. Kashin, V. P. Ananikov, Chem. Sci., 2018, 9, 5564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O. V. Khazipov, M. A. Shevchenko, D. V. Pasyukov, A. Y. Chernenko, A. V. Astakhov, V. A. Tafeenko, V. M. Chernyshev, V. P. Ananikov, Catal. Sci. Technol., 2020, 10, 1228.

    Article  CAS  Google Scholar 

  24. A. V. Astakhov, O. V. Khazipov, A. Y. Chernenko, D. V. Pasyukov, A. S. Kashin, E. G. Gordeev, V. N. Khrustalev, V. M. Chernyshev, V. P. Ananikov, Organometallics, 2017, 36, 1981.

    Article  CAS  Google Scholar 

  25. O. V. Khazipov, M. A. Shevchenko, A. Y. Chernenko, A. V. Astakhov, D. V. Pasyukov, D. B. Eremin, Y. V. Zubavichus, V. N. Khrustalev, V. M. Chernyshev, V. P. Ananikov, Organometallics, 2018, 37, 1483.

    Article  CAS  Google Scholar 

  26. A. Y. Chernenko, A. V. Astakhov, D. V. Pasyukov, P. V. Dorovatovskii, Y. V. Zubavichus, V. N. Khrustalev, V. M. Chernyshev, Russ. Chem. Bull., 2018, 67, 79.

    Article  CAS  Google Scholar 

  27. D. B. Eremin, E. A. Denisova, A. Yu. Kostyukovich, J. Martens, G. Berden, J. Oomens, V. N. Khrustalev, V. M. Chernyshev, V. P. Ananikov, Chem.-Eur J., 2019, 25, 16564.

    Article  CAS  Google Scholar 

  28. V. I. Minkin, Pure Appl. Chem., 1999, 71, 1919.

    Article  CAS  Google Scholar 

  29. L. Cavallo, A. Correa, C. Costabile, H. Jacobsen, J. Organomet. Chem., 2005, 690, 5407.

    Article  CAS  Google Scholar 

  30. H. Jacobsen, A. Correa, A. Poater, C. Costabile, L. Cavallo, Coord. Chem. Rev., 2009, 253, 687.

    Article  CAS  Google Scholar 

  31. T. Dröge, F. Glorius, Angew. Chem., Int. Ed., 2010, 49, 6940.

    Article  CAS  Google Scholar 

  32. R. Dorta, E. D. Stevens, C. D. Hoff, S. P. Nolan, J. Am. Chem. Soc., 2003, 125, 10490.

    Article  CAS  PubMed  Google Scholar 

  33. A. K. de K. Lewis, S. Caddick, F. G. N. Cloke, N. C. Billingham, P. B. Hitchcock, J. Leonard, J. Am. Chem. Soc., 2003, 125, 10066.

    Article  CAS  Google Scholar 

  34. R. Dorta, E. D. Stevens, N. M. Scott, C. Costabile, L. Cavallo, C. D. Hoff, S. P. Nolan, J. Am. Chem. Soc., 2005, 127, 2485.

    Article  CAS  PubMed  Google Scholar 

  35. K. Matsubara, S. Miyazaki, Y. Koga, Y. Nibu, T. Hashimura, T. Matsumoto, Organometallics, 2008, 27, 6020.

    Article  CAS  Google Scholar 

  36. E. P. A. Couzijn, E. Zocher, A. Bach, P. Chen, Chem.-Eur. J., 2010, 16, 5408.

    Article  CAS  PubMed  Google Scholar 

  37. C. Dash, M. M. Shaikh, R. J. Butcher, P. Ghosh, Dalton Trans., 2010, 39, 2515.

    Article  CAS  PubMed  Google Scholar 

  38. A. Comas-Vives, J. N. Harvey, Eur. J. Inorg. Chem., 2011, 2011, 5025.

    Article  CAS  Google Scholar 

  39. R. Jagadeesan, G. Velmurugan, P. Venuvanalingam, RSC Advances, 2015, 5, 80661.

    Article  CAS  Google Scholar 

  40. K. K. Pandey, Int. J. Quantum Chem., 2016, 116, 537.

    Article  CAS  Google Scholar 

  41. R. H. Crabtree, Chem. Rev., 2015, 115, 127.

    Article  CAS  PubMed  Google Scholar 

  42. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Rev. D.01, Gaussian, Inc., Wallingford, 2009.

    Google Scholar 

  43. E. Lee, D. V. Yandulov, J. Organomet. Chem., 2011, 696, 4095.

    Article  CAS  Google Scholar 

  44. L. Dobrzańska, E. Stander-Grobler, C. E. Strasser, S. Cronje, H. G. Raubenheimer, Helv. Chim. Acta, 2012, 95, 2528.

    Article  CAS  Google Scholar 

  45. L. A. Curtiss, M. P. McGrath, J. P. Blaudeau, N. E. Davis, R. C. Binning, Jr., L. Radom, J. Chem. Phys., 1995, 103, 6104.

    Article  CAS  Google Scholar 

  46. R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys, 1980, 72, 650.

    Article  CAS  Google Scholar 

  47. A. D. McLean, G. S. Chandler, J. Chem. Phys., 1980, 72, 5639.

    Article  CAS  Google Scholar 

  48. C. E. Check, T. O. Faust, J. M. Bailey, B. J. Wright, T. M. Gilbert, L. S. Sunderlin, J. Phys. Chem. A, 2001, 105, 8111.

    Article  CAS  Google Scholar 

  49. P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 299.

    Article  CAS  Google Scholar 

  50. C. Adamo, V. Barone, J. Chem. Phys., 1999, 110, 6158.

    Article  CAS  Google Scholar 

  51. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.

    CAS  PubMed  Google Scholar 

  52. S. M. Bachrach, in Computational Organic Chemistry, Ed. S. M. Bachrach, John Wiley & Sons, Inc., 2014, p. 1.

  53. F. Lipparini, G. Scalmani, B. Mennucci, E. Cancès, M. Caricato, M. J. Frisch, J. Chem. Phys., 2010, 133, 014106.

    Article  PubMed  CAS  Google Scholar 

  54. G. Scalmani, M. J. Frisch, J. Chem. Phys., 2010, 132, 114110.

    Article  PubMed  CAS  Google Scholar 

  55. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 2005, 105, 2999.

    Article  CAS  PubMed  Google Scholar 

  56. A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev., 1988, 88, 899.

    Article  CAS  Google Scholar 

  57. G. Frenking, N. Fröhlich, Chem. Rev., 2000, 100, 717.

    Article  CAS  PubMed  Google Scholar 

  58. A. J. Arduengo, S. F. Gamper, J. C. Calabrese, F. Davidson, J. Am. Chem. Soc., 1994, 116, 4391.

    Article  CAS  Google Scholar 

  59. A. A. Danopoulos, D. Pugh, Dalton Trans., 2008, 30.

  60. Y. Hoshimoto, Y. Hayashi, H. Suzuki, M. Ohashi, S. Ogoshi, Organometallics, 2014, 33, 1276.

    Article  CAS  Google Scholar 

  61. A. F. Henwood, M. Lesieur, A. K. Bansal, V. Lemaur, D. Beljonne, D. G. Thompson, D. Graham, A. M. Z. Slawin, I. D. W. Samuel, C. S. J. Cazin, E. Zysman-Colman, Chem. Sci., 2015, 6, 3248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. F. Hering, J. Nitsch, U. Paul, A. Steffen, F. M. Bickelhaupt, U. Radius, Chem. Sci., 2015, 6, 1426.

    Article  CAS  PubMed  Google Scholar 

  63. E. A. B. Kantchev, C. J. O’Brien, M. G. Organ, Angew. Chem., Int. Ed., 2007, 46, 2768.

    Article  CAS  Google Scholar 

  64. R. Jothibasu, K.-W. Huang, H. V. Huynh, Organometallics, 2010, 29, 3746.

    Article  CAS  Google Scholar 

  65. D. S. McGuinness, K. J. Cavell, B. W. Skelton, A. H. White, Organometallics, 1999, 18, 1596.

    Article  CAS  Google Scholar 

  66. S. Caddick, F. G. N. Cloke, P. B. Hitchcock, A. K. de K. Lewis, Angew. Chem., Int. Ed., 2004, 43, 5824.

    Article  CAS  Google Scholar 

  67. H. V. Huynh, C. Holtgrewe, T. Pape, L. L. Koh, E. Hahn, Organometallics, 2006, 25, 245.

    Article  CAS  Google Scholar 

  68. J. Berding, M. Lutz, A. L. Spek, E. Bouwman, Appl. Organomet. Chem., 2011, 25, 76.

    Article  CAS  Google Scholar 

  69. C. H. Lee, D. A. Lutterman, D. G. Nocera, Dalton Trans., 2013, 42, 2355.

    Article  CAS  PubMed  Google Scholar 

  70. M. Heckenroth, E. Kluser, A. Neels, M. Albrecht, Dalton Trans., 2008, 6242.

  71. D. M. Khramov, E. L. Rosen, J. A. V. Er, P. D. Vu, V. M. Lynch, C. W. Bielawski, Tetrahedron, 2008, 64, 6853.

    Article  CAS  Google Scholar 

  72. A. Zanardi, J. A. Mata, E. Peris, Organometallics, 2009, 28, 4335.

    Article  CAS  Google Scholar 

  73. P. L. Arnold, F. G. N. Cloke, T. Geldbach, P. B. Hitchcock, Organometallics, 1999, 18, 3228.

    Article  CAS  Google Scholar 

  74. G. C. Fortman, N. M. Scott, A. Linden, E. D. Stevens, R. Dorta, S. P. Nolan, Chem. Commun., 2010, 46, 1050.

    Article  CAS  Google Scholar 

  75. G. Dahm, C. Bailly, L. Karmazin, S. Bellemin-Laponnaz, J. Organomet. Chem., 2015, 794, 115.

    Article  CAS  Google Scholar 

  76. Y. Zhang, C. R. P. Fulong, C. E. Hauke, M. R. Crawley, A. E. Friedman, T. R. Cook, Chem.-Eur. J., 2017, 23, 4532.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Chernyshev.

Additional information

The authors express their gratitude to V. P. Ananikov for fruitful discussions and valuable comments.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 19-73-10100).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2073—2081, November, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astakhov, A.V., Soliev, S.B. & Chernyshev, V.M. Metal-ligand bond dissociation energies in the Ni, Pd, and Pt complexes with N-heterocyclic carbenes: effect of the oxidation state of the metal (0, +2). Russ Chem Bull 69, 2073–2081 (2020). https://doi.org/10.1007/s11172-020-3002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-3002-5

Key words

Navigation