Skip to main content
Log in

Theoretical study on interactions of N-heterocyclic carbene with the bare first-row transition metals

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The electronic and structural features of the free and substituted N-heterocyclic carbenes (NHCs) and their complexes with the bare first-row transition metals (TMs) have been explored theoretically. The present results indicate that the electron-donating behavior of NHC can be tuned by introduction of the substituent, and the NHC–TM σ-bonding interactions strongly depend on the d-electron configuration of TMs. The B3LYP- and CCSD(T)-predicted bond dissociation energies show a double-peak profile, and the maxima appear in [NHC–V] (26.2 kcal/mol) and [NHC–Ni] (29.7 kcal/mol) with the stable half- and full-filled d configurations, respectively, after accepting the σ-lone pair of NHC. Theoretical calculations on the η2-type structure of [NHC–TM] from π interactions between TM and C=C double bond in NHC are also done by B3LYP-D3. For Zn with d 10, no σ-type structure was located, and all geometry optimization attempts converge to only metastable η6-type configuration, arising from the weak aromatic π interactions. For other TMs, the π interactions between the double C=C bond and TM are responsible for their η2-type structures. The σ- and π-type [NHC–TM] complexes can accommodate additional NHC ligand to form stable [NHC–TM–NHC], and the introduction of second NHC can enhance the bonding interactions between TM and NHCs for most of the bare TMs, showing cooperation effect of the multiple NHC ligands on the TM–NHC bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 4
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Öfele K (1968) J Organomez Chem 12:42

    Article  Google Scholar 

  2. Wanzlick HW, Schönherr HJ (1968) Angew Chem Int Ed Engl 7:141

    Article  CAS  Google Scholar 

  3. Arduengo AJ III, Harlow RL, Kline M (1991) J Am Chem Soc 113:361

    Article  CAS  Google Scholar 

  4. Crabtree RH (2005) J Organomet Chem 690:5451

    Article  CAS  Google Scholar 

  5. Boehme C, Frenking G (1998) Organometallics 17:5801

    Article  CAS  Google Scholar 

  6. Penka EF, Schläpfer CW, Atanasov M, Albrecht M, Daul C (2007) J Organomet Chem 692:5709

    Article  CAS  Google Scholar 

  7. Hopkinson MN, Richter C, Schedler M, Glorius F (2014) Nat Rev 510:485

    CAS  Google Scholar 

  8. Nolan SP (2006) N-heterocyclic carbenes in synthesis. Wiley, Weinheim

    Book  Google Scholar 

  9. Poyatos M, Mata JA, Peris E (2009) Chem Rev 109:3677

    Article  CAS  Google Scholar 

  10. Schuster O, Yang L-R, Raubenheimer HG, Albrecht M (2009) Chem Rev 109:3445

    Article  CAS  Google Scholar 

  11. Mercs L, Albrecht M (2010) Chem Soc Rev 39:1903

    Article  CAS  Google Scholar 

  12. Visbal R, Gimeno MC (2014) Chem Soc Rev 43:3551

    Article  CAS  Google Scholar 

  13. Jacobsen H, Correa A, Poater A, Costabile C, Cavallo L (2009) Coord Chem Rev 253:687

    Article  CAS  Google Scholar 

  14. Hindi KM, Panzner MJ, Tessier CA, Cannon CL, Youngs WJ (2009) Chem Rev 109:3859

    Article  CAS  Google Scholar 

  15. Hickey JL, Ruhayel RA, Barnard PJ, Baker MV, Berners-Price SJ, Filipovska A (2008) J Am Chem Soc 130:12570

    Article  CAS  Google Scholar 

  16. Hahn FE, Jahnke MC (2008) Angew Chem Int Ed 47:3122

    Article  CAS  Google Scholar 

  17. Lazreg F, Nahra F, Cazin CSJ (2015) Coord Chem Rev 293–294:48

    Article  Google Scholar 

  18. Nelson DJ, Nolan SP (2013) Chem Soc Rev 42:6723

    Article  CAS  Google Scholar 

  19. Borthakur B, Rahman T, Phukan AK (2014) J Org Chem 79:10801

    Article  CAS  Google Scholar 

  20. Armentrout PB, Sunderlin LS, Fisher ER (1989) Inorg Chem 28:4436

    Article  CAS  Google Scholar 

  21. Li J-H, Feng D-C, Feng S-Y (1999) Sci China Ser B 42(3):283

    Article  CAS  Google Scholar 

  22. Tonner R, Heydenrych G, Frenking G (2007) Chem Asian J 2:1555

    Article  CAS  Google Scholar 

  23. Schwarz J, Biihm VPW, Gardiner MG, Grosche M, Herrmann WA, Hieringer W, Raudaschl-Sieber G (2000) Chem Eur J 6:1773

    Article  CAS  Google Scholar 

  24. Gusev DG (2009) Organometallics 28:6458

    Article  CAS  Google Scholar 

  25. Perrin L, Clot E, Eisenstein O, Loch J, Crabtree RH (2001) Inorg Chem 40:5806

    Article  CAS  Google Scholar 

  26. Bellemin-Laponnaz S, Dagorne S (2014) Chem Rev 114:8747

    Article  CAS  Google Scholar 

  27. Zhang D, Zi G-F (2015) Chem Soc Rev 44:1898

    Article  CAS  Google Scholar 

  28. Díez-González S, Nolan SP (2007) Coord Chem Rev 251:874

    Article  Google Scholar 

  29. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  31. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Article  CAS  Google Scholar 

  32. Grimme A, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  33. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  34. Nemcsok D, Wichmann K, Frenking G (2004) Organometallics 23:3640

    Article  CAS  Google Scholar 

  35. Cambridge Crystallographic Data Centre database (2014). https://www.ccdc.cam.ac.uk

  36. Raubenheimer HG, Cronje S, van Rooyen PH, Olivier PJ, Toerien JG (1994) Angew Chem 106:687

    Article  CAS  Google Scholar 

  37. Baba E, Cundari TR, Firkin I (2005) Inorg Chim Acta 358:2867

    Article  CAS  Google Scholar 

  38. Hayes JM, Viciano M, Peris E, Ujaque G, Lledós A (2007) Organometallics 26:6170

    Article  CAS  Google Scholar 

  39. Zhang L, Hou Z-M (2013) Chem Sci 4:3395

    Article  CAS  Google Scholar 

  40. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M et al (2010) MOLPRO, version 2010.1

  41. Lu T, Chen F-W (2012) J Comput Chem 33:580

    Article  Google Scholar 

  42. Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910

    Article  CAS  Google Scholar 

  43. Raghavachari K, Trucks GW, Pople JA, Head-Gordon MH (1989) Chem Phys Lett 157:479

    Article  CAS  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision D. 01. Gaussian, Inc., Wallingford

  45. Costa P, Sander W (2014) Angew Chem Int Ed 53:5122

    CAS  Google Scholar 

  46. Leopold DG, Murray KK, Lineberger WC (1984) J Chem Phys 81(2):1048

    Article  CAS  Google Scholar 

  47. Leopold DG, Murray KK, Stevens Miller AE, Lineberger WC (1985) J Chem Phys 83(10):4849

    Article  CAS  Google Scholar 

  48. Kalemos A, Dunning TH, Mavridis JA, Harrison JF (2004) Can J Chem 82:684

    Article  CAS  Google Scholar 

  49. Kerkines ISK, Cársky P, Mavridis A (2005) J Phys Chem A 109:10148

    Article  CAS  Google Scholar 

  50. Vignolle J, Cattoën X, Bourissou D (2009) Chem Rev 109:3333

    Article  CAS  Google Scholar 

  51. Bourissou D, Guerret O, Gabbaï FP, Bertrand G (2000) Chem Rev 100:39

    Article  CAS  Google Scholar 

  52. Inomata H, Ogata K, Fukuzawa SI, Hou Z-M (2012) Org Lett 14:3986

    Article  CAS  Google Scholar 

  53. Cheng M-J, Hu C-H (2000) Chem Phys Lett 322:83

    Article  CAS  Google Scholar 

  54. Ingleson MJ, Layfield RA (2012) Chem Commun 48:3579

    Article  CAS  Google Scholar 

  55. Khramov DM, Lynch VM, Bielawski CW (2007) Organometallics 26:6042

    Article  CAS  Google Scholar 

  56. Ray L, Shaikh MM, Ghosh P (2007) Dalton Trans 8:4546

    Article  Google Scholar 

  57. Nakajima A, Kaya K (2000) J Phys Chem A 104:176

    Article  CAS  Google Scholar 

  58. Kurikawa T, Takeda H, Hirano M, Judai K, Arita T, Nagao S, Nakajima A, Kaya K (1999) Organometallics 18:1430

    Article  CAS  Google Scholar 

  59. Miyajima K, Muraoka K, Hashimoto M, Yasuike T, Yabushita S, Nakajima A, Quasi-Band KK (2002) J Phys Chem A 106:10777

    Article  CAS  Google Scholar 

  60. Kurikawa T, Hirano M, Takeda H, Yagi K, Hoshino K, Nakajima A, Kaya K (1995) J Phys Chem 99:16248

    Article  CAS  Google Scholar 

  61. Hoshino K, Kurikawa T, Takeda H, Nakajima A, Kaya K (1995) J Phys Chem 99:3053

    Article  CAS  Google Scholar 

  62. Yasuike T, Nakajima A, Yabushita S, Kaya K (1997) J Phys Chem A 101:5360

    Article  CAS  Google Scholar 

  63. Miyajima K, Nakajima A, Yabushita S, Knickelbein MB, Kaya K (2004) J Am Chem Soc 126:13202

    Article  CAS  Google Scholar 

  64. van Santen JA, DiLabio GA (2015) J Phys Chem A 119(25):6703

    Article  Google Scholar 

  65. Nelson DJ (2015) Eur J Inorg Chem 2015:2012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology (2012CB214900) and the National Science Foundation of China (21133007 and 21373164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-Xing Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XF., Sun, MJ. & Cao, ZX. Theoretical study on interactions of N-heterocyclic carbene with the bare first-row transition metals. Theor Chem Acc 135, 163 (2016). https://doi.org/10.1007/s00214-016-1922-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1922-9

Keywords

Navigation