Skip to main content
Log in

Metal phosphinohydrazone complexes

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The reaction of benzophenone hydrazone with chlorodiphenylphosphine in the presence of triethylamine affords the monophosphino derivative Ph2C=N-N(H)PPh2(1). The lithiation of 1 with one equivalent of MeLi produces the stable salt Ph2C=N-N(Li)PPh2, and the addition of the second equivalent of MeLi results in the lithiation of the aromatic ring of the Ph2C group followed by the cyclization to lithium-substituted diazaphosphinine. The treatment of the latter with chlorotrimethylsilane furnishes 1,4-diphenyl-2-trimethylsilyl-1,2-dihydrobenzo-[d][1,2,3]diazaphosphinine. Phosphinohydrazone 1 gives 2: 1 complexes with cobalt and nickel bromides, which were characterized by X-ray diffraction. The migratory insertion of the Ph2P group into the N-N bond was not observed in phosphinohydrazone derivatives, as opposed to phosphinohydrazides M-NR-NR-PPh2 (M is metal).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Chen, Z. Lu, Org. Biomol. Chem., 2017, 15, 2280; DOI: https://doi.org/10.1039/C6OB02817A.

    CAS  Google Scholar 

  2. T. Mino, M. Shiotsuki, N. Yamamoto, T. Suenaga, M. Sakamoto, T. Fujita, M. Yamashita, J. Org. Chem., 2001, 66, 1795; DOI: https://doi.org/10.1021/jo0057001.

    CAS  Google Scholar 

  3. M. Widhalm, M. Abraham, V. B. Arion, S. Saarsalu, U. Maeorg, Tetrahedron Asymmetr., 2010, 21, 1971; DOI: https://doi.org/10.1016/j.tetasy.2010.05.031.

    CAS  Google Scholar 

  4. A. Ros, B. Estepa, A. Bermejo, E. Álvarez, R. Fernández, J. M. Lassaletta, J. Org. Chem., 2012, 77, 4740; DOI: https://doi.org/10.1021/jo300548z.

    CAS  Google Scholar 

  5. B. Shaw, U. U. Ike, S. D. Perera, M. Thornton-Pett, Inorg. Chim. Acta, 1998, 279, 95; DOI: https://doi.org/10.1016/S0020-1693(98)00045-0.

    CAS  Google Scholar 

  6. R. Ramachandran, G. Prakash, P. Viswanathamurthi, J. G. Malecki, Inorg. Chim. Acta, 2018, 477, 122; DOI: https://doi.org/10.1016/j.ica.2018.03.007.

    CAS  Google Scholar 

  7. M. Ahmad, S. D. Perera, B. L. Shaw, M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 2002, 1954; DOI: https://doi.org/10.1039/B111079A.

  8. M. Ahmad, S. D. Perera, B. L. Shaw, M. Thornton-Pett, Inorg. Chim. Acta, 1996, 245, 59; DOI: https://doi.org/10.1016/0020-1693(95)04806-5.

    CAS  Google Scholar 

  9. S. D. Perera, B. L. Shaw, M. Thornton-Pett, Inorg. Chim. Acta, 1995, 236, 7; DOI: https://doi.org/10.1016/0020-1693(95)04618-J.

    CAS  Google Scholar 

  10. H. L. Ammon, Acta Cryst., 1991, C47, 196; DOI: https://doi.org/10.1107/S0108270190006357.

    Google Scholar 

  11. M. El-Deek, J. Chem. Engin. Data, 1979, 24, 76; DOI: https://doi.org/10.1021/je60080a021.

    CAS  Google Scholar 

  12. L. A. Cates, Y. M. Cho, L. K. Smith, L. Williams, T. L. Lemke, J. Med. Chem., 1976, 19, 1133; DOI: https://doi.org/10.1021/jm00231a010.

    CAS  Google Scholar 

  13. A. Trofimova, J. H. W. LaFortune, Z.-W. Qu, S. A. Westcott, D. W. Stephan, Chem. Commun., 2019, 55, 12100; DOI: https://doi.org/10.1039/C9CC06914C.

    CAS  Google Scholar 

  14. V. V. Sushev, A. N. Kornev, Yu. A. Kurskii, O. V. Kuznetsova, G. K. Fukin, G. A. Abakumov, Russ. Chem. Bull., 2005, 54, 1632; DOI: https://doi.org/10.1007/s11172-006-0015-7.

    CAS  Google Scholar 

  15. V. V. Sushev, A. N. Kornev, Yu. A. Min’ko, N. V. Belina, Yu. A. Kurskiy, O. V. Kuznetsova, G. K. Fukin, E. V. Baranov, V. K. Cherkasov, G. A. Abakumov, J. Organomet. Chem., 2006, 879; DOI: https://doi.org/10.1016/j.jorganchem.2005.10.030.

  16. V. V. Sushev, N. V. Belina, G. K. Fukin, Yu. A. Kurskiy, A. N. Kornev, G. A. Abakumov, Inorg. Chem., 2008, 47, 2608; DOI: https://doi.org/10.1021/ic701954k.

    CAS  Google Scholar 

  17. N. V. Belina, A. N. Kornev, V. V. Sushev, G. K. Fukin, E. V. Baranov, G. A. Abakumov, J. Organomet. Chem., 2010, 637; DOI: https://doi.org/10.1016/j.jorganchem.2009.11.006.

  18. A. N. Kornev, N. V. Belina, V. V. Sushev, G. K. Fukin, E. V. Baranov, Yu. A. Kurskiy, A. I. Poddelskii, G. A. Abakumov, P. Lonnecke, E. Hey-Hawkins, Inorg. Chem., 2009, 48, 5574; DOI: https://doi.org/10.1021/ic900135b.

    CAS  Google Scholar 

  19. A. M. Z. Slawin, M. Wainwrighta, J. D. Woollins, J. Chem. Soc., Dalton Trans., 2002, 513; DOI: https://doi.org/10.1039/B107072J.

  20. A. Prades, S. Núñez-Pertíñez, A. Riera, X. Verdaguer, Chem. Commun., 2017, 53, 4605; DOI: https://doi.org/10.1039/C7CC01944K.

    CAS  Google Scholar 

  21. B. R. Aluri, N. Peulecke, B. H. Müller, S. Peitz, A. Spannenberg, M. Hapke, U. Rosenthal, Organometallics, 2010, 29, 226; DOI: https://doi.org/10.1021/om900925b.

    CAS  Google Scholar 

  22. G. A. Babu, R. P. Ramasamy, P. Ramasamy, S. Natarajan, J. Cryst. Growth, 2009, 311, 3461; DOI: https://doi.org/10.1016/j.jcrysgro.2009.04.007.

    Google Scholar 

  23. D. Fenske, B. Maczek, K. Maczek, Z. Anorg. Allg. Chem., 1997, 623, 1113; DOI: https://doi.org/10.1002/zaac.19976230718.

    CAS  Google Scholar 

  24. B. A. Arbuzov, V. D. Cherepinskii-Malov, E. N. Dianova, A. I. Gusev, V. A. Sharapov, Dokl. Chem., 1979, 247, 1150.

    CAS  Google Scholar 

  25. R. Keat, L. Manojlovid-Muir, K. W. Muir, D. S. Rycroft, J. Chem. Soc., Dalton Trans., 1981, 2192; DOI: https://doi.org/10.1039/DT9810002192.

  26. A. N. Kornev, V. V. Sushev, Y. S. Panova, N. V. Belina, O. V. Lukoyanova, G. K. Fukin, S. Y. Ketkov, G. A. Abakumov, P. Lönnecke, E. Hey-Hawkins, Inorg. Chem., 2012, 51, 874; DOI: https://doi.org/10.1021/ic201617p.

    CAS  Google Scholar 

  27. R. J. Cross, T. H. Green, R. Keat, J. Chem. Soc., Dalton Trans., 1976, 1424; DOI: https://doi.org/10.1039/DT9760001424.

  28. I. J. Colquhoun, W. McFarlane, J. Chem. Soc., Dalton Trans., 1977, 1674; DOI: https://doi.org/10.1039/DT9770001674.

  29. S. S. Batsanov, Inorg. Mater., 2001, 37, 871; DOI: https://doi.org/10.1023/A:1011625728803.

    CAS  Google Scholar 

  30. Organic Solvents. Physical Properties and Methods of Purification, Ed. A. Weissberger, Interscience Publishers, Inc., New York, 1955.

    Google Scholar 

  31. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, GAUSSIAN-03, Gaussian, Inc., Pittsburgh (PA), 2004.

    Google Scholar 

  32. Bruker, Smart, Saint, Bruker AXS Inc., Madison, Wisconsin, USA, 2012.

    Google Scholar 

  33. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst., 2015, 48, 3; DOI: https://doi.org/10.1107/S1600576714022985.

    CAS  Google Scholar 

  34. G. M. Sheldrick, Acta Cryst., 2015, A71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Panova.

Additional information

The study was carried out within the framework of the Russian Federation state assignement using equipment of the Analytical Center of the G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences and was financially supported by the Federal Target Program “Research and Development in Priority Fields of the Science and Technology Complex of Russia for 2014–2020” (unique project identifier RFMEFI62120X0040).

Russian Chemical Bulletin, International Edition, Vol. 69, No. 10, pp. 1897–1906, October, 2020

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1897–1906, October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panova, Y.S., Sheyanova, A.V., Sushev, V.V. et al. Metal phosphinohydrazone complexes. Russ Chem Bull 69, 1897–1906 (2020). https://doi.org/10.1007/s11172-020-2976-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2976-3

Key words

Navigation