Skip to main content

Advertisement

Log in

Kinetic modeling of dynamic processes in the cholinergic synapse

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A kinetic model describing the dynamics of synaptic “discharge”, taking into account the kinetics of the neurotransmitter injection into the synaptic cleft, pH dependence of the enzyme catalytic activity, and proton removal by diffusion was proposed and studied. In the framework of the kinetic model, functioning of the cholinergic synapse was considered. The results of mathematical modeling of the change in the acetylcholine level, induced pH impulse, and the effect of the impulse transmission frequency and acetylcholinesterase inhibition are presented. A physicochemical interpretation was given for a number of key important physiological phenomena, such as neuromuscular paralysis, the mechanism of information recording and storage in the neurological memory, the action of nerve poisons and toxins, and Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Varfolomeev, N. A. Semenova, V. I. Bykov, S. B. Tsybenova, Dokl. Phys. Chem., 2019, 488, 125.

    Article  CAS  Google Scholar 

  2. S. D. Varfolomeev, N. A. Semenova, M. V. Ublinskiy, V. I. Bykov, S. B. Tsybenova, Chem. Phys. Lett., 2019, 729, 84.

    Article  CAS  Google Scholar 

  3. P. V. Sergeev, N. L. Shimanovskii, V. N. Petrov, Retseptory fiziologicheski aktivnykh veshchestv [Receptors for Physiologically Active Compounds], Sem’ Vetrov, Volgograd, 1999, 640 pp. (in Russian).

    Google Scholar 

  4. E. V. Rozengart, N. E. Basova, S. N. Moralev, S. V. Lushchekina, P. Masson, S. D. Varfolomeev, Chem.-Biol. Interact., 2013, 203, 3.

    Article  CAS  Google Scholar 

  5. T. L. Rosenberry, W. D. Mallender, P. J. Thomas, T. Szegletes, Chem.-Biol. Interact., 1999, 119–120, 85.

    Article  Google Scholar 

  6. M. E. Hasselmo, Curr. Opin. Neurobiol., 2006, 16, 710.

    Article  CAS  Google Scholar 

  7. S. A. Titov, in Neirokhimiya [Neurochemistry], Eds I. P. Ashmarin, P. V. Stukalov, N. D. Eshchenko, Izd. Inst. Biomed. Khim. RAMN, Moscow, 1996, p. 370 (in Russian).

    Google Scholar 

  8. S. V. Zaitsev, K. N. Yarygin, S. D. Varfolomeev, Narkomaniya. Neiropeptidy — morfinovye retseptory [Drug Abuse. Neuropeptides: Morphine Receptors], Izd-vo MGU, Moscow, 1993, 256 pp. (in Russian).

    Google Scholar 

  9. Y. Dunant, V. Gisiger, Molecules, 2017, 22, 1300.

    Article  Google Scholar 

  10. S. V. Lushchekina, L. M. Schopfer, B. L. Grigorenko, A. V. Nemukhin, S. D. Varfolomeev, O. Lockridge, P. Masson, Front. Pharmacol., 2018, 9, 1.

    Article  Google Scholar 

  11. A. V. Nemukhin, A. M. Kulakova, S. V. Lushchekina, A. Yu. Ermilov, S. D. Varfolomeev, Moscow Univ. Chem. Bull., 2015, 70, 274.

    Article  Google Scholar 

  12. A. V. Nemukhin, B. L. Grigorenko, D. I. Morozov, M. S. Kochetov, S. V. Lushchekina, S. D. Varfolomeev, Chem.-Biol. Interact., 2013, 203, 51.

    Article  CAS  Google Scholar 

  13. S. Lushchekina, A. Gubaydullina, V. Polomskih, D. Novichkova, A. Nemukhin, P. Masson, S. Varfolomeev, FEBS J., 2013, 280, 164.

    Google Scholar 

  14. M. C. Reed, A. Lieb, H. F. Nijhout, Bioessays, 2010, 32, 422.

    Article  CAS  Google Scholar 

  15. K. Tai, S. D. Bond, H. R. MacMillan, N. A. Baker, M. J. Holst, J. A. McCammon, Biophys. J., 2003, 84, 2234.

    Article  CAS  Google Scholar 

  16. A. Aidoo, K. Ward, Math. Comput. Model., 2006, 44, 952.

    Article  Google Scholar 

  17. H. D. Middendorf, D. Di Cola, F. Cavatorta, A. Deriu, C. J. Carlile, Biophys. Chem., 1994, 47, 145.

    Article  Google Scholar 

  18. O. A. Krishtal, Y. V. Osipchuk, T. N. Shelest, S. V. Smirnoff, Brain Res., 1987, 436, 352.

    Article  CAS  Google Scholar 

  19. J. A. Gottfried, M. Chesler, J. Neurophysiol., 1996, 76, 2804.

    Article  CAS  Google Scholar 

  20. J. Du, L. R. Reznikov, M. P. Price, X. Zha, Yu. Lu, T. O. Moninger, J. A. Wemmie, M. J. Welsh, Proc. Natl. Acad. Sci., 2014, 111, 8961.

    Article  CAS  Google Scholar 

  21. M. J. Palmer, C. Hull, J. Vigh, H. von Gersdorff, J. Neurosci., 2003, 23, 11332.

    Article  CAS  Google Scholar 

  22. C. J. Dietrich, M. Morad, J. Neurosci., 2010, 30, 16044.

    Article  CAS  Google Scholar 

  23. M. Chesler, Physiol. Rev., 2003, 83, 1183.

    Article  CAS  Google Scholar 

  24. M. Chesler, K. Kaila, Trends Neurosci., 1992, 15, 396.

    Article  CAS  Google Scholar 

  25. J. A. Wemmie, R. J. Taugher, C. J. Kreple, Nat. Rev. Neurosci., 2013, 14, 461.

    Article  CAS  Google Scholar 

  26. T. W. Sherwood, E. N. Frey, C. C. Askwith, Am. J. Physiol. Cell Physiol., 2012, 303, C699.

    Article  CAS  Google Scholar 

  27. E. Deval, X. Gazull, J. Noël, M. Salinas, A. Baron, S. Diochot, E. Lingueglia, Pharmacol. Ther., 2010, 128, 549.

    Article  CAS  Google Scholar 

  28. J. A. Wemmie, M. P. Price, M. J. Welsh, Trends Neurosci., 2006, 29, 578.

    Article  CAS  Google Scholar 

  29. X. P. Chu, Z. G. Xiong, Curr. Drug Targets, 2012, 13, 263.

    Article  CAS  Google Scholar 

  30. J. A. Wemmie, J. Chen, C. C. Askwith, A. M. Hruska-Hageman, B. C. Nolan, P. G. Yoder, E. Lamani, T. Hoshi, J. H. Freeman, M. J. Welsh, Neuron, 2002, 34, 463.

    Article  CAS  Google Scholar 

  31. L. Shi, A. K. Y. Fu, N. Y. Ip, Trends Neurosci., 2012, 35, 441.

    Article  CAS  Google Scholar 

  32. M. Pirazzini, O. Rossetto, R. Eleopra, C. Montecucco, Pharmacol. Rev., 2017, 69, 200.

    Article  CAS  Google Scholar 

  33. S. Papapetropoulos, C. Singer, Semin. Neurol., 2007, 27, 183.

    Article  Google Scholar 

  34. J. Kassa, J. Toxicol. Clin. Toxicol., 2002, 40, 803.

    Article  CAS  Google Scholar 

  35. C. R. Jack, D. A. Bennett, K. Blennow, M. C. Carrilo, B. Dunn, S. B. Haeberlein, D. M. Holtzman, W. Jagust, F. Jessen, J. Karlawish, E. Liu, J. L. Molinuevo, T. Montine, C. Phelps, K. P. Rankin, C. C. Rowe, P. Scheltens, E. Siemers, H. M. Snyder, R. Sperling, Alzheimers Dement., 2018, 14, 535.

    Article  Google Scholar 

  36. A. Karami, M. Eriksdotter, A. Kadir, O. Almkvist, A. Nordberg, T. Darreh-Shori, Front. Mol. Neurosci., 2019, 12, 239.

    Article  CAS  Google Scholar 

  37. G. F. Makhaeva, E. V. Rudakova, N. V. Kovaleva, S. V. Lushchekina, N. P. Boltneva, A. N. Proshin, E. V. Shchegolkov, Ya. V. Burgart, V. I. Saloutin, Russ. Chem. Bull., 2019, 68, 967.

    Article  CAS  Google Scholar 

  38. G. F. Makhaeva, E. F. Shevtsova, N. V. Kovaleva, E. V. Rudakova, M. E. Neganova, L. G. Dubova, P. N. Shevtsov, A. Yu. Aksinenko, V. B. Sokolov, S. O. Bachurin, Russ. Chem. Bull., 2018, 67, 2121.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Tsybenova.

Additional information

Dedicated to Academician of the Russian Academy of Sciences A. M. Muzafarov on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1585–1593, August, 2020.

This work was financially supported by the Russian Science Foundation (Project No. 18-13-00030).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varfolomeev, S.D., Bykov, V.I. & Tsybenova, S.B. Kinetic modeling of dynamic processes in the cholinergic synapse. Russ Chem Bull 69, 1585–1593 (2020). https://doi.org/10.1007/s11172-020-2939-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2939-8

Key words

Navigation