Skip to main content
Log in

Metal-organic frameworks based on [Re6Se8(CN)6]4− cluster anions, Yb3+ cations, and thiophene-2,5-dicarboxylate linkers

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The reaction of [Re6Se8(CN)6]4− cluster anions with Ln3+ cations in the presence of thiophene-2,5-dicarboxylate anions in an aqueous solution was studied. Two new framework compounds were synthesized and structurally characterized: [{Yb(H2O)3}2(tdc)-Re6Se8(CN)6]•10H2O (1) and CsK0,5[{Yb4(OH)4(H2O)7,5(NO3)0,5(tdc)2}{Re6Se8(CN)6}]NO3 • 16.5H2O (2) (tdc is the thiophene-2,5-dicarboxylate anion). Compound 1 crystallizes in a wide pH range (3.0–6.5) and has a porous structure with large open voids accessible to guest molecules. Compound 2 crystallizes at pH 6.0–6.5, contains polynuclear cationic complexes [Yb4(OH)4]8+, and also has a framework structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Keggin, F. D. Miles, Nature, 1936, 137, 577.

    CAS  Google Scholar 

  2. J. Kido, Y. Okamoto, Chem. Rev., 2002, 102, 2357.

    CAS  PubMed  Google Scholar 

  3. L. N. Bochkarev, A. V. Rozhkov, M. N. Bochkarev, Polym. Sci. Ser. C, 2014, 56, 59.

    CAS  Google Scholar 

  4. M. Usman, K. P. Bera, G. Haider, B. Sainbileg, M. Hayashi, G. H. Lee, S. M. Peng, Y. F. Chen, K. L. Lu, Acs Appl. Mater. Interfaces, 2019, 11, 4084.

    CAS  PubMed  Google Scholar 

  5. S. V. Eliseeva, J.-C. G. Bunzli, Chem. Soc. Rev., 2010, 39, 189.

    CAS  PubMed  Google Scholar 

  6. M. L. Aulsebrook, B. Graham, M. R. Grace, K. L. Tuck, Coord. Chem. Rev., 2018, 375, 191.

    CAS  Google Scholar 

  7. P. L. Suarez, M. Garcia-Cortes, M. T. Fernandez-Arguelles, J. R. Encinar, M. Valledor, F. J. Ferrero, J. C. Campo, J. M. Costa-Fernandez, Anal. Chim. Acta, 2019, 1046, 16.

    CAS  PubMed  Google Scholar 

  8. K. Iman, M. Shahid, New J. Chem., 2019, 43, 1094.

    CAS  Google Scholar 

  9. S. M. Pinto, V. Tome, M. J. F. Calvete, M. Castro, E. Toth, C. Geraldes, Coord. Chem. Rev., 2019, 390, 1.

    CAS  Google Scholar 

  10. L. Gotzke, G. Schaper, J. Marz, P. Kaden, N. Huittinen, T. Stumpf, K. K. K. Kammerlander, E. Brunner, P. Hahn, A. Mehnert, B. Kersting, T. Henle, L. F. Lindoy, G. Zanoni, J. J. Weigand, Coord. Chem, Rev., 2019, 386, 267.

    Google Scholar 

  11. T. J. Clough, L. J. Jiang, K. L. Wong, N. J. Long, Nature Commun., 2019, 10.

  12. R. Sessoli, A. K. Powell, Coord. Chem. Rev., 2009, 253, 2328.

    CAS  Google Scholar 

  13. J. Long, Y. Guari, R. A. S. Ferreira, L. D. Carlos, J. Larionova, Coord. Chem, Rev., 2018, 363, 57.

    CAS  Google Scholar 

  14. J. Long, Front. Chem., 2019, 7.

  15. Y. S. Qiao, E. J. Schelter, Acc. Chem. Res., 2018, 51, 2926.

    CAS  PubMed  Google Scholar 

  16. Q. Z. Zhang, F. Yang, Z. H. Xu, M. Chaker, D. L. Ma, Nanoscale Horiz., 2019, 4, 579.

    CAS  Google Scholar 

  17. Y. Y. Liu, X. F. Meng, W. B. Bu, Coord. Chem. Rev., 2019, 379, 82.

    CAS  Google Scholar 

  18. F. Yang, J. Liu, X. Jiang, W. W. Wu, Z. N. Wang, Q. Zeng, R. C. Lv, Rsc Advances, 2019, 9, 17273.

    CAS  Google Scholar 

  19. D. N. Woodruff, R. E. P. Winpenny, R. A. Layfield, Chem. Rev., 2013, 113, 5110.

    CAS  PubMed  Google Scholar 

  20. M. Murugesu, G. Brunet, M. Lemes, M. Hamwi, Commun. Chem., 2018, 1, 88.

    Google Scholar 

  21. G. F. Garcia, D. Guettas, V. Montigaud, P. Larini, R. Sessoli, F. Totti, O. Cador, G. Pilet, B. Le Guennic, Angew. Chem. Int. Ed., 2018, 57, 17089.

    Google Scholar 

  22. M. Fang, H. Zhao, A. V. Prosvirin, D. Pinkowicz, B. Zhao, P. Cheng, W. Wernsdorfer, E. K. Brechin, K. R. Dunbar, Dalton Trans., 2013, 42, 14693.

    CAS  PubMed  Google Scholar 

  23. P.-H. Lin, T. J. Burchell, L. Ungur, L. F. Chibotaru, W. Wernsdorfer, M. Murugesu, Angew. Chem. Int. Ed., 2009, 48, 9489.

    CAS  Google Scholar 

  24. X. Y. Zheng, J. Xie, X. J. Kong, L. S. Long, L. S. Zheng, Coord. Chem. Rev., 2019, 378, 222.

    CAS  Google Scholar 

  25. Z. H. Zhang, Y. A. Zhang, Z. P. Zheng, in Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials, Ed. Z. Zheng, 2017, 173, pp. 1–49.

    CAS  Google Scholar 

  26. M. S. Tarasenko, N. G. Naumov, D. Yu. Naumov, N. V. Kuratieva, V. E. Fedorov, Russ. J. Coord. Chem., 2006, 32, 494.

    CAS  Google Scholar 

  27. M. S. Tarasenko, A. Yu. Ledneva, D. Yu. Naumov, N. G. Naumov, V. E. Fedorov, Russ. J. Struct. Chem., 2011, 52, 172.

    CAS  Google Scholar 

  28. Y. M. Litvinova, Y. M. Gayfulin, K. A. Kovalenko, D. G. Samsonenko, J. van Leusen, I. V. Korolkov, V. P. Fedin, Y. V. Mironov, Inorg. Chem., 2018, 57, 2072.

    CAS  PubMed  Google Scholar 

  29. Z. P. Zheng, Chem. Commun., 2001, 2521.

  30. N. G. Naumov, A. V. Virovets, N. V. Podberezskaya, V. E. Fedorov, Russ. J. Struct. Chem., 1997, 38, 857.

    CAS  Google Scholar 

  31. CrysAlisPro 1.171.38.41 Rigaku Oxford Diffraction, 2015.

  32. G. Sheldrick, Acta Cryst. Sec. C, 2015, 71, 3.

    Google Scholar 

  33. C. Macrae, P. Edgington, P. McCabe, E. Pidcock, G. Shields, R. Taylor, M. Towler, J. van de Streek, J. Appl. Cryst., 2006, 39, 453.

    CAS  Google Scholar 

  34. M. Hu, J. Yao, H. Su, J. Clust. Sci., 2010, 21, 691.

    CAS  Google Scholar 

  35. R.-X. Yao, X. Xu, X.-M. Zhang, Rsc Advances, 2014, 4, 53954.

    CAS  Google Scholar 

  36. J.-G. Wang, C.-C. Huang, X.-H. Huang, D.-S. Liu, Cryst. Growth Des., 2008, 8, 795.

    CAS  Google Scholar 

  37. Z. Chen, B. Zhao, P. Cheng, X.-Q. Zhao, W. Shi, Y. Song, Inorg. Chem., 2009, 48, 3493.

    CAS  PubMed  Google Scholar 

  38. C. M. MacNeill, C. S. Day, S. A. Gamboa, A. Lachgar, R. E. Noftle, J. Chem. Crystallogr., 2010, 40, 222.

    CAS  Google Scholar 

  39. N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 1504.

    CAS  PubMed  Google Scholar 

  40. M. Yawer, M. Kariem, P. Sood, H. N. Sheikh, Crystengcomm, 2016, 18, 3617.

    CAS  Google Scholar 

  41. W. Huang, D. Wu, P. Zhou, W. Yan, D. Guo, C. Duan, Q. Meng, Cryst. Growth Des., 2009, 9, 1361.

    CAS  Google Scholar 

  42. P. J. Calderone, A. M. Plonka, D. Banerjee, Q. A. Nizami, J. B. Parise, Solid State Sci., 2013, 15, 36.

    CAS  Google Scholar 

  43. Z. Chen, M. Fang, X.-M. Kang, Y.-L. Hou, B. Zhao, Dalton Trans., 2016, 45, 85–88.

    PubMed  Google Scholar 

  44. M. Fang, Z. Chen, G.-W. Yin, X.-M. Kang, H. Xu, Inorg. Chem. Commun., 2016, 70, 51.

    CAS  Google Scholar 

  45. F. Ting-Ting, Q. Xiang-Long, L. Jia-Jia, D. Gao-Yun, L. Rui, G. Jia-Li, L. Xia, Chin. J. Inorg. Chem., 2016, 32, 1911.

    Google Scholar 

  46. K. P. Carter, C. H. F. Zulato, E. M. Rodrigues, S. J. A. Pope, F. A. Sigoli, C. L. Cahill, Dalton Trans., 2015, 44, 15843.

    CAS  PubMed  Google Scholar 

  47. J. Ren, Y. Liu, Z. Chen, G. Xiong, B. Zhao, Sci. China Chem., 2012, 55, 1073.

    CAS  Google Scholar 

  48. J. Han, S. Zhang, Q. Wei, G. Xie, S.-P. Chen, Z. Anorg. Allg. Chem., 2017, 643.

  49. C.-H. Zhan, F. Wang, Y. Kang, J. Zhang, Inorg. Chem., 2012, 51, 523.

    CAS  PubMed  Google Scholar 

  50. Y.-Y. Zheng, R.-M. Huang, H. Wei, B. Huang, D.-S. Su, J.-W. Fu, Chin. J. Inorg. Chem., 2018, 34, 733.

    CAS  Google Scholar 

  51. J. Xu, J. Cheng, W. Su, M. Hong, Cryst. Growth Des., 2011, 11, 2294.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Litvinova.

Additional information

Based on the materials of the XXI Mendeleev Congress on General and Applied Chemistry (September 9–13, 2019, St. Petersburg, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1264–1271, July, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvinova, Y.M., Gayfulin, Y.M., Samsonenko, D.G. et al. Metal-organic frameworks based on [Re6Se8(CN)6]4− cluster anions, Yb3+ cations, and thiophene-2,5-dicarboxylate linkers. Russ Chem Bull 69, 1264–1271 (2020). https://doi.org/10.1007/s11172-020-2896-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2896-2

Key words

Navigation