Skip to main content
Log in

A three-dimensional porous metal-organic framework based on 9,9-dimethylfluorene-2,7-dicarboxylic acid (H2MFDA): {[Tb2(MFDA)3(DMF)2(H2O)3] · (H2O)3(DMF)6} n

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The title metal-organic framework, [Tb2(MFDA)3(DMF)2(H2O)3] · (H2O)3(DMF)6} n (I) (H2MFDA = 9,9-dimethylfluorene-2,7-dicarboxylic acid, DMF = N,N-dimethylformamide), has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction (CIF file CCDC no. 995892). Complex I crystallizes in triclinic space group \(P\bar 1\) with a = 13.0022(3), b = 13.3793(3), c = 25.8929(4) Å, α = 84.060(2)°, β = 88.104(2)°, γ = 66.361(2)°, V = 4104.05(15) Å3, C75H104N8O26Tb2, M = 1851.50, ρ c = 1.498 g/cm3, μ(MoK α) = 1.790 mm−1, F(000) = 1896, GOF = 1.055, Z = 2, the final R 1 = 0.0522 and wR 2 = 0.1380 for I > 2σ(I). In MOF I, the Tb2 dinuclear units double-bridged by two carboxylate groups are connected together by MFDA ligands to give rise to a 3D architecture that consists in two types of 1D open channels along the y axis with about 6 × 8 and 9 × 12 Å2 dimensions. The solvent accessible space for the desolvated I is 53.4% of the total volume. The 3D structure can also be rationalized as a six-connected (3.411.52.6) topological network by considering the Tb2 dinuclear units as six-connected nodes and MFDA ligands as linkers, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murray, L.J., Dinca, M., and Long, J.R., Chem. Soc. Rev., 2009, vol. 38, p. 1294.

    Article  CAS  Google Scholar 

  2. Getman, R.B., Bae, Y.S., Wilmer, C.E., et al., Chem. Rev., 2011, vol. 112, p. 703.

    Article  Google Scholar 

  3. Yoon, M., Srirambalaji, R., and Kim, K., Chem. Rev., 2011, vol. 112, p. 1196.

    Article  Google Scholar 

  4. Lee, J.Y., Farha, O.K., Roberts, J., et al., Chem. Soc. Rev., 2009, vol. 38, p. 1450.

    Article  CAS  Google Scholar 

  5. Kurmoo, M., Chem. Soc. Rev., 2009, vol. 38, p. 1353.

    Article  CAS  Google Scholar 

  6. Oyamada, J. and Hou, Z.M., Angew. Chem., Int. Ed., 2013, vol. 51, p. 12828.

    Article  Google Scholar 

  7. Nishiura, M. and Hou, Z.M., Nat. Commun., 2010, vol. 2, p. 257.

    CAS  Google Scholar 

  8. Ruiz, J., Mota, A.J., Rodriguez-Dieguez, A., et al., Chem. Commun., 2012, vol. 48, p. 7916.

    Article  CAS  Google Scholar 

  9. Cardona-Serra, S., Clemente-Juan, J.M., Coronado, E., et al., J. Am. Chem. Soc., 2012, vol. 134, p. 14982.

    Article  CAS  Google Scholar 

  10. Taylor, K.M.L., Kim, J.S., Rieter, W.J., et al., J. Am. Chem. Soc., 2008, vol. 130, p. 2154.

    Article  CAS  Google Scholar 

  11. Zhou, X.H., Li, L., Li, H.H., et al., Dalton Trans., 2013, vol. 42, p. 12403.

    Article  CAS  Google Scholar 

  12. Zhou, X.H., Li, H.H., Xiao, H.P., et al., Dalton Trans., 2013, vol. 42, p. 5718.

    Article  CAS  Google Scholar 

  13. Zhou, X.H., Li, H.H., and Huang, W., Inorg. Chim. Acta, 2012, vol. 384, p. 184.

    Article  CAS  Google Scholar 

  14. Zhou, X.H., Li, L., Li, A., et al., Inorg. Chim. Acta, 2014, vol. 413, p. 38.

    Article  CAS  Google Scholar 

  15. Li, L., Li, A., Song, L., et al., J. Mol. Struct., 2014, vol. 1067, p. 37.

    Article  CAS  Google Scholar 

  16. SAINT, Area Detector Control and Integration Software, Madison (WI, USA): Siemens Analytical X-ray Instruments Inc., 1996.

  17. Sheldrick, G.M., SHELXL97 and SHELXTL, Software Reference Manual, Version 5.1, Madison (WI, USA): Bruker AXS Inc., 1997.

    Google Scholar 

  18. Sheldrick, G.M., SADABS, Program for Empirical Absorption Correction of Area Detector Data, Göttingen (Germany): Univ. of Göttingen, 1996.

    Google Scholar 

  19. Tsuie, B., Reddinger, J.L., Sotzing, G.A., et al., J. Mater. Chem., 1999, vol. 9, p. 2189.

    Article  CAS  Google Scholar 

  20. Zhou, X.H., Peng, Y.H., Du, X.D., et al., Cryst. Growth Des., 2009, vol. 9, p. 1028.

    Article  Google Scholar 

  21. Zhou, X.H., Peng, Y.H., Gu, Z.G., et al., Inorg. Chim. Acta, 2009, vol. 362, p. 3447.

    Article  CAS  Google Scholar 

  22. Spek, A.L., J. Appl. Crystallogr., 2003, vol. 36, p. 7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. -H. Zhou.

Additional information

The article is published in the original

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Li, L., Yang, T. et al. A three-dimensional porous metal-organic framework based on 9,9-dimethylfluorene-2,7-dicarboxylic acid (H2MFDA): {[Tb2(MFDA)3(DMF)2(H2O)3] · (H2O)3(DMF)6} n . Russ J Coord Chem 40, 837–841 (2014). https://doi.org/10.1134/S1070328414110037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328414110037

Keywords

Navigation