Skip to main content
Log in

Prerequisites and prospects for the development of novel systems based on the Keplerate type polyoxomolybdates for the controlled release of drugs and fluorescent molecules

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Synthetic approaches were proposed to the development of hybrid organic—inorganic systems based on giant Keplerate polyoxometalates (POM Mo132), biocompatible polymers, and fluorescent molecules. A concept was formulated for the production of new systems for the prolonged release of drugs bearing a constant or temporary (protonated group) positive charge and fluorescent labels for tissue staining during electrophoretic introduction. In particular, a possibility of covalent functionalization of the POM Mo132 surface by the organosilicon molecules (aminopropyltrimethoxysilane) was shown. A promising procedure of the synthesis of NHS-esters of rhodamine B for the subsequent inclusion into the hybrid system was developed. The kinetic studies of POM destruction in an aqueous medium were carried out. The influence of association of rhodamine B with Mo132 on the character of fluorescence was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. T. Noble, J. F. Stefanick, J. D. Ashley, T. Kiziltepe, B. Bilgicer, Trends Biotechnol., 2014, 32, 32–45.

    Article  CAS  Google Scholar 

  2. W. Gao, J. Wang, Nanoscale, 2014, 6, 10486–10494.

    Article  CAS  Google Scholar 

  3. A. Bordat, T. Boissenot, J. Nicolas, N. Tsapis, Adv. Drug Deliv. Rev., 2019, 138, 167–192.

    Article  CAS  Google Scholar 

  4. S. G. Patel, M. D. Patel, A. J. Patel, M. B. Chougule, H. Choudhury, in Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors, Elsevier, 2018, pp. 191–244.

  5. K. V. Grzhegorzhevskii, A. A. Ostroushko, Colloids Surfaces A: Physicochem. Eng. Asp., 2015, 480, 130–137.

    Article  CAS  Google Scholar 

  6. K. Grzhegorzhevskii, A. Ostroushko, O. Koriakova, I. Ovchinnikova, G. Kim, Inorg. Chim. Acta, 2015, 436, 205–213.

    Article  CAS  Google Scholar 

  7. D. G. Kurth, P. Lehmann, D. Volkmer, A. Müller, D. Schwahn, J. Chem. Soc., Dalton Trans., 2000, 3989–3998.

  8. T. Liu, B. Imber, E. Diemann, G. Liu, K. Cokleski, H. Li, Z. Chen, A. Müller, J. Am. Chem. Soc., 2006, 128, 15914–15920.

    Article  CAS  Google Scholar 

  9. B. B. Sarma, L. Avram, R. Neumann, Chem. A Eur. J., 2016, 22, 15231–15236.

    Article  Google Scholar 

  10. C. Besson, S. Schmitz, K. M. Capella, S. Kopilevich, I. A. Weinstock, P. Kögerler, Dalton Trans., 2012, 41, 9852.

    Article  CAS  Google Scholar 

  11. A. Ostroushko, I. Gagarin, M. Tonkushina, K. Grzhegorzhevskii, O. Russkikh, J. Clust. Sci., 2018, 29, 111–120.

    Article  CAS  Google Scholar 

  12. K. V. Grzhegorzhevskii, M. O. Tonkushina, A. V. Fokin, K. G. Belova, A. A. Ostroushko, Dalton Trans., 2019, 48, 6984–6996.

    Article  CAS  Google Scholar 

  13. A. A. Ostroushko, I. D. Gagarin, M. O. Tonkushina, K. V. Grzhegorzhevskii, I. G. Danilova, I. F. Gette, G. A. Kim, Russ. J. Phys. Chem. A, 2017, 91, 1811–1815.

    Article  CAS  Google Scholar 

  14. A. A. Ostroushko, I. D. Gagarin, K. V. Grzhegorzhevskii, I. F. Gette, D. A. Vlasov, A. A. Ermoshin, O. N. Antosyuk, S. V. Shikhova, I. G. Danilova, J. Mol. Liq., 2019, 110910.

  15. A. A. Ostroushko, M. O. Tonkushina, Russ. J. Phys. Chem. A, 2016, 90, 436–442.

    Article  CAS  Google Scholar 

  16. A. A. Ostroushko, M. O. Tonkushina, Russ. J. Phys. Chem. A, 2015, 89, 443–446.

    Article  CAS  Google Scholar 

  17. S. Sasaki, G. P. C. Drummen, G. Konishi, J. Mater. Chem. C, 2016, 4, 2731–2743.

    Article  CAS  Google Scholar 

  18. D. A. Merkushev, S. D. Usoltsev, Y. S. Marfin, A. P. Pushkarev, D. Volyniuk, J. V. Grazulevicius, E. V. Rumyantsev, Mater. Chem. Phys., 2017, 187, 104–111.

    Article  CAS  Google Scholar 

  19. A. Müller, E. Krickemeyer, H. Bögge, M. Schmidtmann, F. Peters, Angew. Chem., Int. Ed. Engl., 1998, 37, 3359–3363.

    Article  Google Scholar 

  20. K. V. Grzhegorzhevskii, P. S. Zelenovskiy, O. V. Koryakova, A. A. Ostroushko, Inorg. Chim. Acta, 2019, 489, 287–300.

    Article  CAS  Google Scholar 

  21. F. L. Arbeloa, P. R. Ojeda, I. L. Arbeloa, J. Lumin., 1989, 44, 105–112.

    Article  Google Scholar 

  22. J. M. Austin, I. R. Harrison, T. I. Quickenden, J. Phys. Chem., 1986, 90, 1839–1843.

    Article  CAS  Google Scholar 

  23. S. Xu, Y. Wang, Y. Zhao, W. Chen, J. Wang, L. He, Z. Su, E. Wang, Z. Kang, J. Mater. Chem. A, 2016, 4, 14025–14032.

    Article  CAS  Google Scholar 

  24. M. Artemyev, J. Nanophotonics, 2012, 6, 061705.

    Article  Google Scholar 

  25. A. A. Ostroushko, M. Y. Sennikov, Russ. J. Phys. Chem. A, 2009, 83, 111–115.

    Article  CAS  Google Scholar 

  26. L. J. Bellamy, The Infra-Red Spectra of Complex Molecules, Springer, Netherlands, 1975, 300.

    Book  Google Scholar 

  27. K. Nakanishi, Infrared Absorption Spectroscopy, San Francisco, 1962, 224.

  28. P. G. Harrison, A. Torr, J. Organomet. Chem., 1997, 538, 19–29.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Grzhegorzhevskii.

Additional information

The authors are grateful to M. Yu. Kornev for an important contribution to the discussion of the results of NMR spectroscopy.

This work was financially supported by the Russian Science Foundation (Project No. 19-73-00177).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 0804–0814, April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grzhegorzhevskii, K.V., Shevtsev, N.S., Abushaeva, A.R. et al. Prerequisites and prospects for the development of novel systems based on the Keplerate type polyoxomolybdates for the controlled release of drugs and fluorescent molecules. Russ Chem Bull 69, 804–814 (2020). https://doi.org/10.1007/s11172-020-2836-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2836-1

Key words

Navigation