Skip to main content
Log in

New one-, two-, and three-dimensional metal-organic frameworks based on magnesium(II): synthesis and structure

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Six new metal-organic frameworks based on magnesium(II) ions of various dimensionality were synthesized: chain-like [Mg(Hazdc)2(nmp)2] (1, H2azdc is 4,4′-azobenzenedicarboxylic acid, nmp is N-methylpyrrolidone), layered [Mg(H2btc)(nmp)2] (2, H4btc is 1,2,4,5-benzene-tetracarboxylic acid), [Mg3(sdc)3(def)4] •3DEF (3, H2sdc is 4,4’-stilbenedicarboxylic acid, def or DEF is N,N-diethylformamide), [Mg3(azdc)3(dma)4] • 3DMA (4, dma or DMA is N,N-di-methylacetamide), [Mg3(azdc)3(dmf)4] (5, dmf is N,N-dimethylformamide), and doubly-interpenetrated three-dimensional [Mg3(azdc)3(nmp)4] •NMP (6, NMP is N-methylpyrrolidone). According to the single-crystal X-ray dif raction data, compounds 1 and 2 are built from mononuclear carboxylate units {Mg(RCOOH)2(RCOO)2(nmp)2}. Compounds 3-6 are composed on trinuclear carboxylate units {Mg3(RCOO)6}. In isostructural compounds 3-5, these units are linked to each other through carboxylate bridges to form polymer layers; in compound 6, these units are linked together to form a doubly-interpenetrated three-dimensional metal-organic framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Dybtsev, A. A. Sapianik, V. P. Fedin, Mendeleev Commun., 2017, 4, 321.

    Article  Google Scholar 

  2. M. O. Barsukova, S. A. Sapchenko, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Rev., 2018, 87, 1139.

    Article  CAS  Google Scholar 

  3. D. N. Dybtsev, D. G. Samsonenko, V. P. Fedin, Russ. J. Coord. Chem., 2016, 42, 557.

    Article  CAS  Google Scholar 

  4. P. A. Demakov, S. A. Sapchenko, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Bull., 2018, 67, 490.

    Article  CAS  Google Scholar 

  5. J. Li, X. Wang, G. Zhao, Ch. Chen, Zh. Chai, A. Alsaedi, T. Hayatf, X. Wang, Chem. Soc. Rev., 2018, 47, 2322.

    Article  CAS  Google Scholar 

  6. J. Duan, W. Jin, S. Kitagawa, Coord. Chem. Rev., 2017, 332, 48.

    Article  CAS  Google Scholar 

  7. R. A. Agarwal, N. K. Gupta, Coord. Chem. Rev., 2017, 332, 100.

    Article  CAS  Google Scholar 

  8. S. Mukherjee, A. V. Desai, S. K. Ghosh, Coord. Chem. Rev., 2018, 367, 82.

    Article  CAS  Google Scholar 

  9. K. Adil, Y. Belmabkhout, R. S. Pillai, A. Cadiau, P. M. Bhatt, A. H. Assen, G. Maurin, M. Eddaoudi, Chem. Soc. Rev., 2017, 46, 3402.

    Article  CAS  Google Scholar 

  10. S. S. Han, J. L. Mendoza-Cortés, W. A. Goddard III, Chem. Soc. Rev., 2009, 38, 1460–1476.

    Article  CAS  Google Scholar 

  11. M. Dincă, J. R. Long, J. Am. Chem. Soc., 2005, 127, 9376–9377.

    Article  Google Scholar 

  12. J. A. Rood, B. C. Noll, K. W. Henderson, Inorg. Chem., 2006, 45, 5521–5528.

    Article  CAS  Google Scholar 

  13. A. A. Lysova, D. G. Samsonenko, K. A. Kovalenko, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Bull., 2019, 68, 793.

    Article  CAS  Google Scholar 

  14. A. Mallick, S. Saha, P. Pachfule, S. Roy, R. Banerjee, J. Mater. Chem., 2010, 10, 9073–9080.

    Article  Google Scholar 

  15. S. R. Caskey, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc., 2008, 130, 10870–10871.

    Article  CAS  Google Scholar 

  16. T. K. Koltunova, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, Russ. J. Struct. Chem., 2017, 58, 1048.

    Article  CAS  Google Scholar 

  17. S. Castellanos, F. Kapteijn, J. Garson, CrystEngComm, 2016, 18, 4006.

    Article  CAS  Google Scholar 

  18. C. L. Jones, A. J. Tansell, T. L. Easun, J. Mater. Chem. A, 2016, 4, 6714.

    Article  CAS  Google Scholar 

  19. A. B. Kanj, K. Müller, L. Heinke, Macromol. Rapid Commun., 2018, 39, 1700239.

    Article  Google Scholar 

  20. A. L. Spek, Acta Crystallogr., 2015, C71, 9.

    Google Scholar 

  21. J. A. Rood, B.C. Noll, K. W. Henderson, Main Chem. Group, 5, 2006, 21.

    Article  CAS  Google Scholar 

  22. I. Senkovska, J. Fritsch, S. Kaskel, Eur. J. Inorg. Chem., 2007, 5475–5479.

    Google Scholar 

  23. R. P. Davies, R. J. Less, P. D. Lickiss, A. J. P. White, Dalton Trans., 2007, 2528.

    Google Scholar 

  24. M. Dincă, J. R. Long, J. Am. Chem. Soc., 2005, 127, 9376–9377.

    Article  Google Scholar 

  25. I. Senkovska, S. Kaskel, Eur. J. Inorg. Chem., 2006, 4564.

    Google Scholar 

  26. P. P. Meng, L. Zhang, L. L. Gong, X. F. Feng, L. N. Meng, F. Luo, Inorg. Chem. Comm., 2016, 70, 181.

    Article  CAS  Google Scholar 

  27. CrysAlisPro 1.171.38.46, Rigaku Oxford Dif raction: The Woodlands, TX, USA, 2015.

  28. W. Kabsch, Acta Crystallogr., 2010, D66, 125–132.

    Google Scholar 

  29. G. M. Shedrick, Acta Crystallogr., 2015, A71, 3–8.

    Google Scholar 

  30. G. M. Shedrick, Acta Crystallogr., 2015, C71, 3–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Fedin.

Additional information

Based on the materials of the International Markovnikov Congress on Organic Chemistry (June 21–28, 2019, Moscow-Kazan, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 0360—0368, February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marakulin, A.V., Lysova, A.A., Samsonenko, D.G. et al. New one-, two-, and three-dimensional metal-organic frameworks based on magnesium(II): synthesis and structure. Russ Chem Bull 69, 360–368 (2020). https://doi.org/10.1007/s11172-020-2768-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2768-9

Keywords

Navigation