Skip to main content
Log in

Diethylamine-based ionic liquids: quantum chemical calculations and experiment

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The structural and energetic characteristics of the compounds formed by the reaction of diethylamine (DEA) with protic acids (sulfuric (H2SO4), methanesulfonic (MsOH), trifluoromethanesulfonic (TfOH), and para-toluenesulfonic (TsOH)) were examined using quantum chemical computations (B3LYP-GD3/6-31++G(d,p)). The strength of the hydrogen bonds in the ion pairs formed was quantitatively estimated by the QTAIM theory and NBO analysis. The results of the quantum chemical computations and the obtained thermal (phase transition and decomposition temperatures) and physicochemical (viscosity and conductivity) characteristics indicate that the reactions of DEA with the acids afford salts. The salts with the melting points higher than 100 °C are formed in the case of DEA/OTf(OTs), while protic ionic liquids are produced in the case of DEA/OMs(HSO4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Marekha, M. Bria, M. Moreau, I. DeWaele, F.-A. Miannay, Y. Smortsova, T. Takamuku, O. N. Kalugin, M. Kiselev, A. Idrissi, J. Mol. Liq., 2015, 210, 227.

    Article  CAS  Google Scholar 

  2. H. Watanabe, H. Doi, S. Saito, M. Matsugami, K. Fujii, R. Kanzaki, Y. Kameda, Y. Umebayashi, J. Mol. Liq., 2016, 217, 35.

    Article  CAS  Google Scholar 

  3. A. Yethiraj, J. Phys.: Condens. Matter, 2016, 28, 414020.

    Google Scholar 

  4. G. V. Lisichkin, A. Yu. Olenin, Russ. Chem. Bull., 2018, 67, 949.

    Article  CAS  Google Scholar 

  5. V. G. Krasovskiy, E. A. Chernikova, L. M. Glukhov, G. I. Kapustin, A. A. Koroteev, L. M. Kustov, Russ. Chem. Bull., 2018, 67, 1621.

    Article  CAS  Google Scholar 

  6. N. Bicak, J. Mol. Liq., 2005, 116, 15.

    Article  CAS  Google Scholar 

  7. J. P. Hallett, T. Welton, Chem. Rev., 2011, 111, 3508.

    Article  CAS  PubMed  Google Scholar 

  8. S. A. Shamsi, N. D. Danielson, J. Sep. Sci., 2007, 30, 1729.

    Article  CAS  PubMed  Google Scholar 

  9. S. N. Adamovich, R. G. Mirskov, A. N. Mirskova, M. G. Voronkov, Russ. Chem. Bull., 2012, 61, 1260.

    Article  CAS  Google Scholar 

  10. H. Nakamoto, M. Watanabe, Chem. Commun., 2007, 43, 2539.

    Article  Google Scholar 

  11. M. Martinez, C. Iojoiu, P. Judeinstein, L. Cointeaux, J.-C. Lepretre, J.-Y. Sanchez, ECS Trans., 2009, 25, 1647.

    Article  CAS  Google Scholar 

  12. J.-Ph. Belieres, C. A. Angell, J. Phys. Chem. B, 2007, 111, 4926.

    Article  CAS  PubMed  Google Scholar 

  13. J. L. Lebga-Nebane, S. E. Rock, J. Franclemont, D. Roy, S. Krishnan, Ind. Eng. Chem. Res., 2012, 51, 14084.

    Article  CAS  Google Scholar 

  14. Md. A. B. H. Susan, A. Noda, S. Mitsushima, M. Watanabe, Chem. Commun., 2003, 8, 938.

    Article  CAS  Google Scholar 

  15. M. Mamlouk, P. Ocon, K. Scott, J. Power Sources, 2014, 245, 915.

    Article  CAS  Google Scholar 

  16. M. Martinez, Y. Molmeret, L. Cointeaux, C. Iojoiu, J.-C. Lepretre, N. El Kissi, P. Judeinstein, J.-Y. Sanchez, J. Power Sources, 2010, 195, 5829.

    Article  CAS  Google Scholar 

  17. C. Iojoiu, M. Hana, Y. Molmeret, M. Martinez, L. Cointeaux, N. El Kissi, J. Teles, J.-C. Leprêtre, P. Judeinstein, J.-Y. Sanchez, Fuel Cells, 2010, 10, 778.

    Article  CAS  Google Scholar 

  18. A. J. Cruz-Cabeza, CrystEngComm, 2012, 14, 6362.

    Article  CAS  Google Scholar 

  19. J. E. S. J. Reid, C. E. S. Bernardes, F. Agapito, F. Martins, S. Shimizu, M. E. Minas da Piedade, A. J. Walker, Phys. Chem. Chem. Phys., 2017, 19, 28133.

    Article  CAS  PubMed  Google Scholar 

  20. J. Stoimenovski, E. I. Izgorodina, D. R. MacFarlane, Phys. Chem. Chem. Phys., 2010, 12, 10341.

    Article  CAS  PubMed  Google Scholar 

  21. A. T. Nasrabadi, L. D. Gelb, J. Phys. Chem. B, 2018, 122, 5961.

    Article  CAS  PubMed  Google Scholar 

  22. M. Sh. Miran, H. Kinoshita, T. Yasuda, Md. A. B. H. Susan, M. Watanabe, Phys. Chem. Chem. Phys., 2012, 14, 5178.

    Article  CAS  PubMed  Google Scholar 

  23. M. Yoshizawa, W. Xu, C. A. Angell, J. Am. Chem. Soc., 2003, 125, 15411.

    Article  CAS  PubMed  Google Scholar 

  24. M. Shen, Y. Zhang, K. Chen, S. Che, J. Yao, H. Li, J. Phys. Chem. B, 2017, 121, 1372.

    Article  CAS  PubMed  Google Scholar 

  25. S. K. Davidowski, F. Thompson, W. Huang, M. Hasani, S. A. Amin, C. A. Angell, J. L. Yarger, J. Phys. Chem. B, 2016, 120, 4279.

    Article  CAS  PubMed  Google Scholar 

  26. G. L. Burrell, I. M. Burgar, F. Separovic, N. F. Dunlop, Phys. Chem. Chem. Phys., 2010, 12, 1571.

    Article  CAS  PubMed  Google Scholar 

  27. P. K. Chhotaray, R. L. Gardas, J. Chem. Thermodynamics, 2014, 72, 117.

    Article  CAS  Google Scholar 

  28. N. N. Chipanina, T. N. Aksamentova, S. N. Adamovich, A. I. Albanov, A. N. Mirskova, R. G. Mirskov, M. G. Voronkov, Comp. Theor. Chem., 2012, 985, 36.

    Article  CAS  Google Scholar 

  29. D. N. R. Thummuru, B. S. Mallik, J. Phys. Chem. A, 2017, 121, 8097.

    Article  CAS  PubMed  Google Scholar 

  30. R. Ludwig, J. Phys. Chem. B, 2009, 113, 15419.

    Article  CAS  PubMed  Google Scholar 

  31. I. V. Fedorova, M. A. Krestyaninov, L. P. Safonova, J. Phys. Chem. A, 2017, 121, 7675.

    Article  CAS  PubMed  Google Scholar 

  32. I. V. Fedorova, L. P. Safonova, J. Phys. Chem. A, 2019, 123, 293.

    Article  CAS  PubMed  Google Scholar 

  33. I. V. Fedorova, L. P. Safonova, J. Phys. Chem. A, 2018, 122, 5878.

    Article  CAS  PubMed  Google Scholar 

  34. CRC Handbook of Chemistry and Physics, 95th ed., Ed. W. M. Haynes, CRC Press, 2014, 2704 pp.

  35. C. Iojoiu, P. Judeinstein, J.-Y. Sanchez, Electrochim. Acta, 2007, 53, 1395.

    Article  CAS  Google Scholar 

  36. V. Govinda, P. Attri, P. Venkatesu, P. Venkateswarlu, Fluid Phase Equilib., 2011, 304, 35.

    Article  CAS  Google Scholar 

  37. T. Kavitha, P. Attri, P. Venkatesu, R. S. Rama Devi, T. Hofman, J. Chem. Thermodyn., 2012, 54, 223.

    Article  CAS  Google Scholar 

  38. R. Umapathi, P. Attri, P. Venkatesu, J. Phys. Chem. B, 2014, 118, 5971.

    Article  CAS  PubMed  Google Scholar 

  39. V. Govinda, P. Venkatesu, I. Bahadur, Phys. Chem. Chem. Phys., 2016, 18, 8278.

    Article  CAS  PubMed  Google Scholar 

  40. J. Barthel, F. Feuerlein, R. Neueder, R. Wachter, J. Solution Chem., 1980, 9, 209.

    Article  CAS  Google Scholar 

  41. F. Jensen, Introduction to Computational Chemistry, 2nd ed., John Wiley and Sons, Ltd, Chichester, 2007, 620 pp.

    Google Scholar 

  42. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

    Article  CAS  Google Scholar 

  43. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B., 1988, 37, 785.

    Article  CAS  Google Scholar 

  44. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104.

    Article  CAS  PubMed  Google Scholar 

  45. R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys., 1971, 54, 724.

    Article  CAS  Google Scholar 

  46. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, Jr., F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT, 2009.

    Google Scholar 

  47. A. E. Reed, F. Weinhold, J. Chem. Phys., 1983, 78, 4066.

    Article  CAS  Google Scholar 

  48. S. Boys, F. Bernardi, Mol. Phys., 2002, 19, 553.

    Article  Google Scholar 

  49. F. Weinhold, C. Landis, Valency and Bonding: a Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press, New York, 2005, 749 pp.

    Google Scholar 

  50. R. F. W. Bader, Atoms in Molecules, a Quantum Theory, Oxford University Press, Oxford, 1990, 456 pp.

    Google Scholar 

  51. T. A. Keith, AIMAll, Version 10.05.04, 2010; aim.tkgristmill.com.

  52. E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett., 1998, 285, 170.

    Article  CAS  Google Scholar 

  53. E. Raamat, K. Kaupmees, G. Ovsjannikov, A. Trummal, A. Kütt, J. Saame, I. Koppel, I. Kaljurand, L. Lipping, T. Rodima, V. Pihl, I. A. Koppel, I. Leito, J. Phys. Org. Chem., 2013, 26, 162.

    Article  CAS  Google Scholar 

  54. A. Bondi, J. Phys. Chem., 1964, 68, 441.

    Article  CAS  Google Scholar 

  55. Hydrogen Bonding — New Insights, Ed. S. J. Grabowski, Springer, New York, 2006, 535 pp.

    Google Scholar 

  56. R. F. W. Bader, H. J. Essen, J. Chem. Phys., 1984, 80, 1943.

    Article  CAS  Google Scholar 

  57. D. Cremer, E. Kraka, Angew. Chem., Int. Ed. Engl., 1984, 23, 627.

    Article  Google Scholar 

  58. U. Koch, P. L. A. Popelier, J. Phys. Chem., 1995, 99, 9747.

    Article  CAS  Google Scholar 

  59. P. L. A. Popelier, J. Phys. Chem. A, 1998, 102, 1873.

    Article  CAS  Google Scholar 

  60. E. Espinosa, I. Alkorta, J. Elguero, E. Molins, J. Chem. Phys., 2002, 117, 5529.

    Article  CAS  Google Scholar 

  61. F. Weinhold, J. Mol. Struct.: THEOCHEM, 1997, 398–399, 181.

    Article  Google Scholar 

  62. A. K. Covington, R. Thompson, J. Solution Chem., 1974, 3, 603.

    Article  CAS  Google Scholar 

  63. H. Cerfontain, A. Koeberg-Telder, C. Kruk, Tetrahedron Lett., 1975, 42, 3639.

    Article  Google Scholar 

  64. R. Hayes, S. Imberti, G. G. Warr, R. Atkin, Angew. Chem., Int. Ed. Engl., 2013, 52, 4623.

    Article  CAS  Google Scholar 

  65. L. E. Shmukler, M. S. Gruzdev, N. O. Kudryakova, Yu. A. Fadeeva, A. M. Kolker, L. P. Safonova, J. Mol. Liq., 2018, 266, 139.

    Article  CAS  Google Scholar 

  66. L. E. Shmukler, M. S. Gruzdev, N. O. Kudryakova, Yu. A. Fadeeva, A. M. Kolker, L. P. Safonova, RSC Adv., 2016, 6, 109664.

    Article  CAS  Google Scholar 

  67. Y. Shen, D. F. Kennedy, T. L. Greaves, A. Weerawardena, R. J. Mulder, N. Kirby, G. Song, C. J. Drummond, Phys. Chem. Chem. Phys., 2012, 14, 7981.

    Article  CAS  PubMed  Google Scholar 

  68. Z. Xue, L. Qin, J. Jiang, T. Mu, G. Gao, Phys. Chem. Chem. Phys., 2018, 20, 8382.

    Article  CAS  PubMed  Google Scholar 

  69. J. M. Crosthwaite, M. J. Muldoon, J. K. Dixon, J. L. Anderson, J. F. Brennecke, J. Chem. Thermodyn., 2005, 37, 559.

    Article  CAS  Google Scholar 

  70. T. J. Wooster, K. M. Johanson, K. J. Fraser, D. R. MacFarlane, J. L. Scott, Green Chem., 2006, 8, 691.

    Article  CAS  Google Scholar 

  71. V. Kamavaram, R. G. Reddy, Int. J. Therm. Sci., 2008, 47, 773.

    Article  CAS  Google Scholar 

  72. Ch. Zhao, G. Burrell, A. A. J. Torriero, F. Separovic, N. F. Dunlop, D. R. MacFarlane, A. M. Bond, J. Phys. Chem. B, 2008, 112, 6923.

    Article  CAS  PubMed  Google Scholar 

  73. T. A. Siddique, S. Balamurugan, S. M. Said, N. A. Sairi, W. M. D. W. Normazlan, RSC Adv., 2016, 6, 18266.

    Article  CAS  Google Scholar 

  74. D. M. Makarov, L. P. Safonova, J. Chem. Eng. Data, 2019, 64, 211.

    Article  CAS  Google Scholar 

  75. X. Lu, G. Burrell, F. Separovic, Ch. Zhao, J. Phys. Chem. B, 2012, 116, 9160.

    Article  CAS  PubMed  Google Scholar 

  76. L. E. Shmukler, E. V. Glushenkova, Yu. A. Fadeeva, M. S. Gruzdev, N. O. Kudryakova, L. P. Safonova, J. Mol. Liq., 2019, 283, 338.

    Article  CAS  Google Scholar 

  77. H. Vogel, Phys. Z., 1921, 22, 645.

    CAS  Google Scholar 

  78. G. Tammann, W. Hesse, Z. Anorg. Allg. Chem., 1926, 156, 245.

    Article  CAS  Google Scholar 

  79. B. B. Owen, H. Zeldes, J. Chem. Phys., 1950, 18, 1083.

    Article  CAS  Google Scholar 

  80. H. E. Gunning, A. R. Gordon, J. Chem. Phys., 1942, 10, 126.

    Article  CAS  Google Scholar 

  81. M. Kaminsky, Z. Physik. Chem. Neue Floge, 1957, 12, 206.

    Article  CAS  Google Scholar 

  82. C. Schreiner, S. Zugmann, R. Hartl, H. J. Gores, J. Chem. Eng. Data, 2010, 55, 1784.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Shmukler.

Additional information

Based on the materials of the Russian National Conference “Interplay between Ionic and Covalent Interactions in Design of Molecular and Nano Chemical Systems” (ChemSci-2019) (May 13–17, 2019, Moscow, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2009–2019, November, 2019.

This work was financially supported in part by the Russian Foundation for Basic Research (Project No. 19-03-00505).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmukler, L.E., Fedorova, I.V., Gruzdev, M.S. et al. Diethylamine-based ionic liquids: quantum chemical calculations and experiment. Russ Chem Bull 68, 2009–2019 (2019). https://doi.org/10.1007/s11172-019-2660-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-019-2660-7

Key words

Navigation