Skip to main content

Advertisement

Log in

Investigation of СО2 adsorption on amine-functionalized silicas and metal-organic polymers

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Adsorption properties of amine-functionalized mesoporous silica NH2-SBA-15, zeolite-like imidazole framework ZIF-8, and amine-functionalized metal-organic polymer NH2-MIL-53 have been investigated. Non-modified mesoporous adsorbent SBA-15 has a higher sorption capacity for CO2 than microporous ZIF-8, although microporous sample is characterized by a larger surface area and the values of total pore volume are close. When amine groups are present on the surface of the adsorbents, the chemical adsorption contributes more then the physical one. The adsorption capacity increases with increasing concentration of the functional groups which, in its turn, correlates with adsorbent surface area. Among the studied samples, the best adsorption properties demonstrate amine-functionalized adsorbents, aminefunctionalized mesoporous silica NH2-SBA-15, and amine-functionalized metal-organic polymer NH2-MIL-53.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Du, H. B. Park, M. M. Dal-Cin, M. D. Guiver, Energy Environ. Sci., 2012, 5, 7306–7322.

    Article  CAS  Google Scholar 

  2. E. S. Rubin, Elements, 2008, 4, 311–317.

    Article  CAS  Google Scholar 

  3. E. S. Rubin, C. Chen, A. B. Rao, Energy Policy, 2007, 35, 4444–4454.

    Article  Google Scholar 

  4. X. Luo, M. Wang, J. Chen, Fuel, 2015, 151, 110–117.

    Article  CAS  Google Scholar 

  5. Z. H. Lee, K. T. Lee, S. Bhatia, A. R. Mohamed, Renewable and Sustainable Energy Reviews, 2012, 16, 2599–2609.

    Article  CAS  Google Scholar 

  6. G. Calleja, J. Pau, J. A. Calles, J. Chem. Eng. Data, 1998, 43, 994–1000.

    Article  CAS  Google Scholar 

  7. J. S. Lee, J. H. Kim, J. T. Kim, J. K. Suh, J. M. Lee, C. H. Lee, Chem. Eng. Data, 2002, 47, 1237–1242.

    Article  CAS  Google Scholar 

  8. A. Sayari, Y. Belmabkhout, J. Am. Chem. Soc., 2010, 132, 6312–6314.

    Article  CAS  PubMed  Google Scholar 

  9. J. J. Lee, C.-H. Chen, D. Shimon, S. E. Hayes, C. Sievers, C. W. Jones, J. Phys. Chem. C, 2017, 121, 23480–23487.

    Article  CAS  Google Scholar 

  10. A. Samanta, A. Zhao, G. K. H. Shimizu, P. Sarkar, P. Gupta, Ind. Eng. Chem. Res., 2012, 51, 1438–1463.

    Article  CAS  Google Scholar 

  11. V. Zelenak, M. Badanicova, D. Halamova, J. Cejka, A. Zukal, N. Murafa, G. Goerigk, J. Chem. Eng., 2008, 144, 336–347.

    Article  CAS  Google Scholar 

  12. N. Rao, M. Wang, Z. Shang, Y. Hou, G. Fan, J. Li, Energy Fuels, 2018, 32, 670–677.

    Article  CAS  Google Scholar 

  13. B. Arstad, H. Fjellvag, K. O. Kongshaug, O. Swang, R. Blom, Adsorption, 2008, 14, 755–762.

    Article  CAS  Google Scholar 

  14. H. R. Abid, Z. H. Rada, X. Duan, H. Sun, S. Wang, Energy Fuels, 2018, 32, 4502–4510; DOI: 10.1021/acs.energyfuels. 7b03240.

    Article  CAS  Google Scholar 

  15. L. S. Lai, Y. F. Yeong, N. C. Ani, K. K. Lau, A. M. Shariff, Particulate Sci. Technol., 2014, 32, 520–528.

    Article  CAS  Google Scholar 

  16. J.-R. Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P. B. Balbuena, H.-C. Zhou, Coord. Chem. Rev., 2011, 255, 1791–1800.

    Article  CAS  Google Scholar 

  17. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc., 1998, 120, 6024–3036.

    Article  CAS  Google Scholar 

  18. W. Klinthong, K. Chao, C. Tan, Ind. Eng. Chem. Res., 2013, 52, 9834–9842.

    Article  CAS  Google Scholar 

  19. N. A. H. M. Nordin, A. F. Ismail, A. Mustafa, P. S. Goh, D. Rana, T. Matsuura, RSC Adv., 2014, 4, 33292–33300.

    Article  CAS  Google Scholar 

  20. S. Couck, J. F. M. Denayer, G. V. Baron, T. Remy, J. Gascon, F. Kapteijn, J. Am. Chem. Soc., 2009, 131, 6326–6327.

    Article  CAS  Google Scholar 

  21. X. Liu, Y. Li, Y. Ban, Chem. Commun., 2013, 49, 9140–9142.

    Article  CAS  Google Scholar 

  22. X. Cheng, A. Zhang, K. Hou, Dalton Trans., 2013, 42, 13698–13705.

    Article  CAS  PubMed  Google Scholar 

  23. N. Hiyoshi, K. Yogo, T. Yashima, Micropor. Mesopor. Mater., 2005, 84, 357–365.

    Article  CAS  Google Scholar 

  24. A. C. C. Chang, S. S. C. Chuang, M. Gray, Energy Fuels, 2003, 17, 468–473.

    Article  CAS  Google Scholar 

  25. R. Banerjee, H. Furukawa, D. Britt, C. Kobler, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc., 2009, 131, 3875–3877.

    Article  CAS  Google Scholar 

  26. Y. Belmabkhout, G. D. Weireld, A. Sayari, Langmuir, 2009, 25, 13275–13278.

    Article  CAS  Google Scholar 

  27. J. Liu, P. K. Thallapally, B. P. McGrail, Chem. Soc. Rev., 2012, 41, 2308–2322.

    Article  CAS  PubMed  Google Scholar 

  28. A. Zhao, A. Samanta, P. Sarkar, R. Gupta, Ind. Eng. Chem. Res., 2013, 52, 6480–6491.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Mikhailov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1595–1600, September, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamonov, N.A., Mikhailov, S.A., Dzhungurova, G.E. et al. Investigation of СО2 adsorption on amine-functionalized silicas and metal-organic polymers. Russ Chem Bull 67, 1595–1600 (2018). https://doi.org/10.1007/s11172-018-2263-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-018-2263-8

Key words

Navigation