Advertisement

Russian Chemical Bulletin

, Volume 66, Issue 11, pp 2066–2072 | Cite as

Selective conversion of methane to aromatic hydrocarbons on large crystallite zeolite catalysts with mesoporous structure

  • S. A. Mikhaylov
  • N. A. Mamonov
  • L. M. Kustov
  • M. N. Mikhaylov
Full Article

Abstract

Large crystallite mesoporous MFI (ZSM-5) zeolite was synthesized by using carbon nano-powder as a secondary template. The surface properties, morphological and phase composition of the synthesized material and of the commercial ZSM-5 (Zeolyst) zeolite were studied by nitrogen porosimetry, XRD and scanning electron microscopy. The results showed that the volume of mesopores volume increases with development of a secondary mesoporosity in the structure of zeolite. The obtained zeolite supports were used to prepare molybdenum-containing catalysts for the methane aromatization by solid phase preparation technique. Based on the XPS data, molybdenum particles in these catalysts are characterized by more uniform size distribution. The formation of a secondary pore structure restrains the carbon deposit formation as well as increases the methane conversion and the yield of the aromatic compounds.

Key words

methane aromatization molybdenum zeolite thermoprogrammed oxidation acidity X-ray diffraction scanning electron microscopy mesoporosity template 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. V. Nikolaeva, N. A. Mamonov, L. M. Kustov, M. N. Mikhailov, Russ. Chem. Bull., 2015, 64, 269.CrossRefGoogle Scholar
  2. 2.
    M. E. Davis, Nature, 2002, 417, 813.CrossRefGoogle Scholar
  3. 3.
    S. Ma, X. Guo, L. Zhao, S. Scott, X. Bao, J. Energy Chem., 2013, 1, 22.Google Scholar
  4. 4.
    H. Tao, C. Li, J. Ren, Y. Wang, J. Solid State Chem., 2011, 184, 1820.CrossRefGoogle Scholar
  5. 5.
    Y. Tao, H. Kanoh, L. Abrams, Chem. Rev., 2006, 106, 896.CrossRefGoogle Scholar
  6. 6.
    A. V. Kucherov, Russ. J. Phys. Chem., 2014, 88, 386.CrossRefGoogle Scholar
  7. 7.
    K. Na, M. Choi, R. Ryoo, Microporous Mesoporous Mater., 2013, 166, 3.CrossRefGoogle Scholar
  8. 8.
    Y. Liu, W. Zhang, Z. Liu, S. Xu, J. Phys. Chem., 2008, 112, 15375.Google Scholar
  9. 9.
    L. Wang, C. Yin, Z. Shan, Colloids Surf. A: Physicochem. Eng. Aspects, 2009, 340, 126.CrossRefGoogle Scholar
  10. 10.
    M. Ogura, S. Shinomiya, J. Tateno, Appl. Catal. A, 2001, 219, 33.CrossRefGoogle Scholar
  11. 11.
    L. M. Kustov, Topics Catal., 1997, 4, 131.CrossRefGoogle Scholar
  12. 12.
    J. H. Scoefild, J. Electr. Spectr., 1976, 9, 29.CrossRefGoogle Scholar
  13. 13.
    M. Conte, B. Xu, T. E. Davies, Microporous Mesoporous Mater., 2012, 164, 207.CrossRefGoogle Scholar
  14. 14.
    H. Liu, X. Bao, Y. Xu, J. Catal., 2006, 239, 441.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • S. A. Mikhaylov
    • 1
    • 2
  • N. A. Mamonov
    • 2
  • L. M. Kustov
    • 1
  • M. N. Mikhaylov
    • 1
    • 2
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.LLC “RN-RDC”MoscowRussian Federation

Personalised recommendations