Skip to main content
Log in

The role of hole defects in the formation of active sites in the catalyst for methane dehydroaromatization

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The formation of active sites in the molybdenum-zeolite catalyst for methane dehydroaromatization was studied by the density functional theory method. The interaction of MoO2(OH)2 particle with the Brønsted site, anionic site, and electron hole of the zeolite was studied. The mechanism governing the formation of mononuclear active sites was proposed. It was shown that the formation of the MoO2 mononuclear active site with participation of electron hole of the zeolite is thermodynamically possible and is accompanied by electron density transfer from zeolite oxygen atom to molybdenum atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Wang, L. Tao, M. Xie, G. Xu, J. Huang, Y. Xu, Catal. Lett., 1993, 21, 35.

    Article  CAS  Google Scholar 

  2. S. Xing, D. Zhou, L. Cao, X. Li, Chin. J. Catal., 2010, 31, 415.

    Article  CAS  Google Scholar 

  3. B. M. Weckhuysen, D. Wang, M. P. Rosynek, J. H. Lunsford, J. Catal., 1998, 175, 338.

    Article  CAS  Google Scholar 

  4. Y. Xu, S. Liu, L. Wang, M. Xie, X. Guo, Catal. Lett., 1995, 30, 135.

    Article  Google Scholar 

  5. F. Solymosi, A. Erdöhelyi, A. Szöke, Catal. Lett., 1995, 32, 43.

    Article  CAS  Google Scholar 

  6. D. J. Wang, J. H. Lunsford, M. P. Rosynek, Top. Catal., 1996, 3, 289.

    Article  CAS  Google Scholar 

  7. D. J. Wang, J. H. Lunsford, M. P. Rosynek, J. Catal., 1997, 169, 347.

    Article  CAS  Google Scholar 

  8. H. Liu, X. Bao, Y. Xu, J. Catal., 2006, 239, 441.

    Article  CAS  Google Scholar 

  9. B. Li, S. Li, N. Li, H. Chen, W. Zhang, X. Bao, B. Lin, Micropor. Mesopor. Mater., 2005, 88, 244.

    Article  Google Scholar 

  10. D. Zhou, Y. Zhang, H. Zhu, D. Ma, X. Bao, J. Phys. Chem. C, 2007, 111, 2081.

    Article  CAS  Google Scholar 

  11. X. Solans-Monfort, V. Branchadell, M. Sodupe, M. Sierka, J. Sauer, J. Chem. Phys., 2004, 121, 6034.

    Article  CAS  Google Scholar 

  12. S. Shih, J. Catal., 1983, 79, 390.

    Article  CAS  Google Scholar 

  13. R. H. D. Nuttall, J. A. Weil, Can. J. Phys., 1981, 59, 1696.

    Article  CAS  Google Scholar 

  14. A. Abou-Kais, J. C. Vederine, J. Massardier, J. Chem. Soc., Faraday Trans. 1, 1975, 71, 1697.

    Article  CAS  Google Scholar 

  15. J. To, A. A. Sokol, S. A. French, N. Kaltsoyannis, C. R. A. Catlow, J. Chem. Phys., 2005, 122, 144704.

    Article  Google Scholar 

  16. G. Pacchioni, F. Frigoli, D. Ricci, J. Weil, Phys. Rev. B., 2001, 63, 054102.

    Article  Google Scholar 

  17. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

    Article  CAS  Google Scholar 

  18. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B., 1988, 37, 785.

    Article  CAS  Google Scholar 

  19. S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys., 1980, 58, 1200.

    Article  CAS  Google Scholar 

  20. W. J. Stevens, M. Krauss, H. Basch, P. G. Jasien, Can. J. Chem., 1992, 70, 612.

    Article  CAS  Google Scholar 

  21. A. A. Granovsky, Firefly version 7.1.G, http:// classic.chem.msu.su/gran/firefly/index.html.

  22. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO 4.M. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 1999.

    Google Scholar 

  23. F. Musso, P. Ugliengo, X. Solans-Monfort, M. Sodupe, J. Phys. Chem. C, 2010, 114, 16430.

    Article  CAS  Google Scholar 

  24. S. K. Ignatov, A. A. Bagatur´yants, A. G. Razuvaev, M. V. Alfimov, M. B. Motovshchikova, V. A. Dodonov, Russ. Chem. Bull. (Engl. Transl.), 1998, 47, 1257

    Article  CAS  Google Scholar 

  25. S. K. Ignatov, Izv. Akad. Nauk, Ser. Khim., 1998, 1296].

    Google Scholar 

  26. A. A. Bagatur´yants, S. K. Ignatov, A. G. Razuvaev, O. Gropen, Mater. Sci. Semiconductor Process, 2000, 3, 71.

    Article  Google Scholar 

  27. D. Zhou, D. Ma, X. Liu, X. Bao, J. Mol. Cat. A: Chem., 2001, 168, 225.

    Article  CAS  Google Scholar 

  28. L. Mosqueira, C. Angeles-Chavez, E. Torres-García, Mater. Chem. Phys., 2011, 126, 930.

    Article  CAS  Google Scholar 

  29. D. Zhou, D. Ma, Y. Wang, X. Liu, X. Bao, Chem. Phys. Lett., 2003, 373, 46.

    Article  CAS  Google Scholar 

  30. F. Solymosi, A. Cserenyi, A. Szoke, T. Bansagi, A. Oszko, J. Catal., 1997, 165, 150.

    Article  CAS  Google Scholar 

  31. M. R. Toosi, B. Sabour, T. Hamuleh, M. N. Peyrovi, React. Kinet. Mech. Cat., 2010, 101, 221.

    Article  CAS  Google Scholar 

  32. D. Zhou, D. Ma, X. Liu, X. Bao, J. Chem. Phys., 2001, 114, 9125.

    Article  CAS  Google Scholar 

  33. E. V. Fadeeva, N. A. Mamonov, L. M. Kustov, M. N. Mikhailov, Russ. Chem. Bull. (Int. Ed.), 2013, 62, 1967

    Article  CAS  Google Scholar 

  34. E. V. Fadeeva, Izv. Akad. Nauk, Ser. Khim., 2013, 1967].

    Google Scholar 

  35. R. H. D. Nuttall, J. A. Weil, Solid State Commun., 1980, 35, 789.

    Article  CAS  Google Scholar 

  36. B. Wichterlová, J. Nováková, Z. Práљil, Zeolites, 1988, 8, 117.

    Article  Google Scholar 

  37. J.-P. Tessonnier, B. Louis, S. Walspurger, J. Sommer, M.-J. Ledoux, C. Pham-Huu, J. Phys. Chem. B, 2006, 110, 10390.

    Article  CAS  Google Scholar 

  38. W. Ding, S. Li, G. D. Meitzner, E. Iglesia, J. Phys. Chem. B, 2001, 105, 506.

    Article  CAS  Google Scholar 

  39. A. K. Sandhu, S. Singh, O. P. Pandey, Mater. Chem. Phys., 2009, 115, 783.

    Article  CAS  Google Scholar 

  40. M. Leon, P. Martin, D. Bravo, F. J. Lopez, A. Ibarra, A. Rason, F. Mota, J. Nucl. Mater., 2008, 374, 386.

    Article  CAS  Google Scholar 

  41. T. E. Tsai, D. L. Griscom, Phys. Rev. Lett., 1991, 67, 2517.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Mikhailov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 0269—0277, February, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaeva, E.V., Mamonov, N.A., Kustov, L.M. et al. The role of hole defects in the formation of active sites in the catalyst for methane dehydroaromatization. Russ Chem Bull 64, 269–277 (2015). https://doi.org/10.1007/s11172-015-0856-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-015-0856-z

Keywords

Navigation