Skip to main content
Log in

Solution state and complexing ability of 1,4-bis(amidomethylsulfinyl)butane toward iron(III), copper(II), cobalt(II), nickel(II), and manganese(II)

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The solution state and thermodynamic stability of complexes of the new antituberculosis agent 1,4-bis(amidomethylsulfinyl)butane (L) with iron(III), copper(II), cobalt(II), nickel(II), and manganese(II) in an aqueous solution in the presence and in the absence of the nonionic surfactant Brij 35 were studied by spectrophotometry, pH potentiometry, NMR relaxation technique (T = 25 °C; variable ionic strength), and mathematical simulation. The geometry optimization of all structures was carried out by the molecular mechanics method MM2 in order to obtain data on coordination modes. In addition, the structure of 1,4-bis(amidomethylsulfinyl)butane was refined by the DFT/B3LYP/6-311++G(d,p) quantum chemical method using the IEFPCM model to take into account solvent effects. In an aqueous solution (in the concentration range of 1.3•10–5—1•10–3 mol L–1) and in the presence of Brij 35, 1,4-bis(amidomethylsulfinyl)butane exists as a neutral monomer. The Beer—Lambert—Bouguer law is obeyed in a wide concentration range for compound L in an aqueous solution, as well as in the presence of the surfactant, which can be used for the quantification of compound L. Iron(III), cobalt(II), and nickel(II) were shown to form 1: 1 mononuclear complexes with L; and copper(II) forms, 1: 1 and 2: 2 complexes. The presence of Brij 35 in the Cu2+L system at a micellar concentration promotes the formation of a dinuclear complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pat. RF 259125; Byul. Izobret. [Inventor Bull.], 2016, No. 20 (in Russian).

  2. Yu. I. Sal´nikov, G. A. Boos, S. G. Fattakhov, M. M. Shulaeva, G. A. Chmutova, A. R. Khusainova, V. V. Neklyudov, Uch. zap. Kazansk. un-ta, Ser. estestv. nauki [Proceedings of Kazan University, Natural Sci. Series], 2011, 153, 48 (in Russian).

    Google Scholar 

  3. V. V. Neklyudov, G. A. Boos, S. G. Fattakhov, G. A. Chmutova, M. M. Shulaeva, Yu. I. Sal´nikov, Russ. J. Gen. Chem., 2013, 84, 562.

    Article  Google Scholar 

  4. V. V. Neklyudov, G. A. Boos, S. G. Fattakhov, G. A. Chmutova, M. M. Shulaeva, Yu. I. Salnikov, Russ. Chem. Bull., 2014, 63, 1113.

    Article  CAS  Google Scholar 

  5. V. V. Neklyudov, G. A. Boos. S. G. Fattakhov, G. A. Tschmutova, M. M. Shulaeva, Yu. I. Salnikov, Russ. Chem. Bull., 2015, 64, 1602.

    Article  CAS  Google Scholar 

  6. N. Schoenfeld, Grenzflaechenaktive Aethlenoxid-Addukte, Wissenschaftliche Verlagsgesellschaft MBH Stuttgard, 1976.

    Google Scholar 

  7. A. A. Popel, Magnitno-relaksatsionnyi metod analiza neorganicheskikh veshchestv [Magnetic Relaxation Method in Analysis of Inorganic Substances], Moscow, Khimiya, 1978, 224 pp. (in Russia).

    Google Scholar 

  8. E. A. Burilova, A. B. Ziyatdinova, Yu. I. Zyavkina, R. R. Amirov, Uch. zap. Kazansk. un-ta, Ser. estestv. nauki [Proceedings of Kazan University, Natural Sci. Series], 2013, 155, 10 (in Russian).

    CAS  Google Scholar 

  9. Yu. I. Sal´nikov, A. N. Glebov, F. V. Devyatov, Poliyadernye kompleksy v rastvorakh [Polynuclear Complexes in Solutions], Izd-vo KGU, Kazan, 1989, 287 pp. (in Russian).

    Google Scholar 

  10. V. P. Vasil´ev, Termodinamicheskie svoistva rastvorov elektrolitov [Thermodynamic Properties of Electrolyte Solutions], Moscow, Vysshaya shkola, 1982, 320 pp. (in Russian).

    Google Scholar 

  11. Yu. Yu. Lur´e, Spravochnik po analiticheskoi khimii [Handbook of Analytical Chemistry], Moscow, Khimiya, 1989, 448 pp. (in Russian).

    Google Scholar 

  12. N. B. Perevoshchikova, V. I. Kornev, Vestn. Udmurtskogo Un-ta: Khimiya [Bull. Udmurt University: Ser. Chem], 2006, 8, 189 (in Russian).

    Google Scholar 

  13. E. S. Shcherbakova, I. P. Gol´dshtein, E. N. Gur´yanova, K. A. Kocheshkov, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1975, 24, 1165.

    Article  Google Scholar 

  14. F. R. Hartley, C. Burgess, R. M. Alcock, Solution in Equilibria, Ellis Horwood, New York, 1980, 361 p.

    Google Scholar 

  15. Cambridgesoft-ChemBioOffice Ultra, ver. 12.0; http://www.cambridgesoft.com/software/chembiooffice.

  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 09, Revision B.01, Gaussian Inc., Pittsburgh PA, 2003.

    Google Scholar 

  17. J. Barret, A. L. Mansell, J. Chem. Soc. (B), 1971, 173.

    Google Scholar 

  18. V. V. Neklyudov, G. A. Boos, G. A. Chmutova, S. G. Fattakhov, M. M. Shulaeva, Yu. I. Bagina, Yu. I. Sal´nikov, Russ. J. Gen. Chem., 2016, 86, 2367.

    Article  CAS  Google Scholar 

  19. F. V. Devyatov, A. E. Nepryakhin, A. R. Mustafina, Yu. I. Sal´nikov, Zh. Fiz. Khim., 1990, 64, 853 [Russ. J. Phys. Chem. (Engl. Transl.), 1990, 64].

    CAS  Google Scholar 

  20. Y. Dimitrova, Bulgar. Chem. Commun., 2010, 42, 3.

    CAS  Google Scholar 

  21. V. P. Belousov, M. Yu. Panov, Termodinamika vodnykh rastvorov neelektrolitov [Thermodynamics of Aqueous Solutions of Nonelectrolytes], Leningrad, Khimiya, 1983, 265 pp. (in Russian).

    Google Scholar 

  22. F. Umland, A. Janssen, D. Thierig, G. Wuensch, Theorie und praktische Anwendung von Komplexbildnern, Frankfurt am Main, Akademische Verlagsgesellschaft, 1971.

    Google Scholar 

  23. A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsteram—Qxford—New York—Toronto, 1984.

    Google Scholar 

  24. G. L. Eichhorn. Inorganic Biochemistry, Elsevier, Amsterdam—Qxford—New York, 1975.

    Google Scholar 

  25. F. V. Devyatov, V. F. Safina, L. G. Lazareva, Yu. I. Sal´nikov, Zh. Neorg. Khim., 1993, 38, 1085 [Russ. J. Inorg. Chem. (Engl. Transl.), 1993, 38].

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Neklyudov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 0628—0635, April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neklyudov, V.V., Boos, G.A., Shulaeva, M.M. et al. Solution state and complexing ability of 1,4-bis(amidomethylsulfinyl)butane toward iron(III), copper(II), cobalt(II), nickel(II), and manganese(II). Russ Chem Bull 66, 628–635 (2017). https://doi.org/10.1007/s11172-017-1783-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-017-1783-y

Key words

Navigation