Skip to main content
Log in

Mechanism of thermal decomposition of allyltrichlorosilane with formation of three labile intermediates: dichlorosilylene, allyl radical, and atomic chlorine

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

It is experimentally found that allyltrichlorosilane dissociates under vacuum pyrolysis (~10–2 Torr) at temperatures above 1100 K to form three labile intermediates: allyl radical, dichlorosilylene, and monoatomic chlorine. On the basis of experimental and theoretical data obtained, it is shown that the decomposition reaction proceeds in two steps. The first step is a typical reaction of homolytic decomposition to two radicals (C3H5 and SiCl3) at the weakest Si—C bond. Due to weakness of the Si—Cl bond in the SiCl3 radical, the energy of which is even somewhat lower than the dissociation energy of the Si—C bond in starting AllSiCl3, this radical undergoes further dissociation to SiCl2 and Cl, thus resulting in three intermediates of different classes of highly reactive species formed from AllSiCl3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Bally, in Reactive Intermediate Chemistry, Eds R. A. Moss, M. S. Platz, M. Jones, John Wiley & Sons, 2004, 797.

  2. E. G. Baskir, E. Ya. Misochko, O. M. Nefedov, Russ. Chem. Rev. (Engl. Transl.), 2009, 78, 742.

    Article  Google Scholar 

  3. S. V. Chapyshev, Russ. Chem. Bull. (Int. Ed.), 2011, 60, 1274 [Izv. Akad. Nauk, Ser. Khim., 2011, 1250].

    Article  CAS  Google Scholar 

  4. C. Wentrup, Acc. Chem. Res., 2011, 44, 393.

    Article  CAS  Google Scholar 

  5. N. P. Gritsian, Russ. Chem. Rev. (Engl. Transl.), 2007, 76, 1218.

    Google Scholar 

  6. W. Sander, G. Bucher, S. Wierlacher, Chem. Rev., 1993, 93, 1583.

    Article  CAS  Google Scholar 

  7. P. P. Gaspar, R. West, in The Chemistry of Organic Silicon Compounds, Eds Z. Rappoport, Y. Apeloig, Wiley, Chichester, 1998, V. 3, Chap. 43, 2463.

  8. S. E. Boganov, M. P. Egorov, V. I. Faustov, O. M. Nefedov, in The Chemistry of Organic Germanium Tin and Lead Compounds, Ed. Z. Rappoport, Wiley, Chichester, 2002, Vol. 2, Chap. 12, 749.

  9. A. K. Mal´tsev, V. A. Korolev, O. M. Nefedov, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1982, 31, 2131 [Izv. Akad. Nauk SSSR, Ser. Khim., 1982, 2415].

    Article  Google Scholar 

  10. G. Maier, H. P. Reisenauer, B. Rohde, K. Dehnicke, Chem. Ber., 1983, 116, 732.

    Article  CAS  Google Scholar 

  11. A. K. Mal´tsev, V. A. Korolev, O. M. Nefedov, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1984, 33, 510 [Izv. Akad. Nauk SSSR, Ser. Khim., 1984, 555].

    Article  Google Scholar 

  12. K. Holtzhauer, C. Cometta-Morini, J. F. M. Oth, J. Phys. Org. Chem., 1990, 3, 219.

    Article  CAS  Google Scholar 

  13. E. G. Baskir, O. M. Nefedov, Russ. Chem. Bull. (Engl. Transl.), 1996, 45, 99 [Izv. Akad. Nauk, Ser. Khim., 1996, 109].

    Article  Google Scholar 

  14. S. Nandi, A. P. Arnold, K. B. Carpenter, R. M. Nimlos, C. D. Dayton, B. Ellison, J. Phys. Chem. A, 2001, 105, 7514.

    Article  CAS  Google Scholar 

  15. V. Misîc´, K. Piech, T. Bally, J. Am. Chem. Soc., 2013, 135, 8625.

    Article  Google Scholar 

  16. V. A. Svyatkin, A. K. Mal´tsev, O. M. Nefedov, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1977, 26, 2072 [Izv. Akad. Nauk SSSR, Ser. Khim., 1977, 2236].

    Article  Google Scholar 

  17. L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys., 2007, 127, 124105.

    Article  Google Scholar 

  18. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, W. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01; Gaussian, Inc., Wallingford (CT), 2013.

    Google Scholar 

  19. C. Gonzalez, H. B. Schlegel, J. Chem. Phys., 1989, 90, 2154.

    Article  CAS  Google Scholar 

  20. C. Gonzalez, H. B. Schlegel, J. Chem. Phys., 1990, 94, 5523.

    Article  CAS  Google Scholar 

  21. A. V. Lalov, S. E. Boganov, V. I. Faustov, M. P. Egorov, O. M. Nefedov, Russ. Chem. Bull. (Int. Ed.), 2003, 52, 526 [Izv. Akad. Nauk, Ser. Khim., 2003, 504].

    Article  CAS  Google Scholar 

  22. M. E. Jacox, D. E. Milligan, Chem. Phys., 1974, 4, 45.

    Article  CAS  Google Scholar 

  23. M.-C. Liu, S.-C. Chen, C.-H. Chin, T.-P. Huang, H.-F. Chen, Y.-J. Wu, J. Phys. Chem. Lett., 2015, 6, 3185.

    Article  CAS  Google Scholar 

  24. K. V. J. Jose, S. R. Gadre, K. Sundararajan, K. S. Viswanathan, J. Chem. Phys., 2007, 127, 104501.

    Article  Google Scholar 

  25. S. Suzert, L. Andrews, J. Phys. Chem., 1989, 93, 2123.

    Article  Google Scholar 

  26. E. S. Kline, Z. H. Kafafi, R. H. Hauge, J. L. Margrave, J. Am. Chem. Soc., 1987, 109, 2402.

    Article  CAS  Google Scholar 

  27. L. Manceron, L. Andrews, J. Am. Chem. Soc., 1985, 107, 563.

    Article  CAS  Google Scholar 

  28. A. Engdahl, B. Nelander, Chem. Phys. Lett., 1983, 100, 129.

    Article  CAS  Google Scholar 

  29. N. I. Bagdanskis, M. O. Bulanin, Yu. V. Fadeev, Opt. Spektrosc., 1970, 29, 687 [Optics and Spectroscopy (Engl. Transl.), 1970, 29].

    CAS  Google Scholar 

  30. J. W. Huang, W. R. M. Graham, J. Chem. Phys., 1990, 93, 1583.

    Article  CAS  Google Scholar 

  31. D. W. Ball, R. G. S. Pong, Z. H. Kafafi, J. Phys. Chem., 1994, 98, 10720.

    Article  CAS  Google Scholar 

  32. A. J. Barnes, J. D. R. Howells, J. Chem. Soc., Faraday Trans. 2, 1973, 69, 532.

    Article  CAS  Google Scholar 

  33. E. Rytter, D. M. Gruen, Spectrochim. Acta, A, 1979, 35, 199.

    Article  Google Scholar 

  34. G. Maier, S. Senger, Angew. Chem., Int. Ed. Engl., 1994, 33, 558.

    Article  Google Scholar 

  35. V. A. Korolev, A. K. Mal´tsev, O. M. Nefedov, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1989, 38, 957 [Izv. Akad. Nauk SSSR, Ser. Khim., 1989, 1058].

    Article  Google Scholar 

  36. E. B. Jochnowitz, X. Zhang, M. R. Nimlos, M. E. Varner, J. F. Stanton, G. B. Ellison, J. Phys. Chem. A, 2005, 109, 3812.

    Article  CAS  Google Scholar 

  37. D. E. Mann, N. Acquista, D. White, J. Chem. Phys., 1966, 44, 3453.

    Article  CAS  Google Scholar 

  38. D. Millard, A. Schriver, J. P. Perchard, C. Girardet, J. Chem. Phys., 1979, 71, 505.

    Article  Google Scholar 

  39. A. Engdahl, B. Nelander, J. Chem. Phys., 1986, 84, 1981.

    Article  CAS  Google Scholar 

  40. M. T. Bowers, W. H. Flygare, J. Chem. Phys., 1966, 44, 1389.

    Article  CAS  Google Scholar 

  41. J. R. Durig, D. T. Durig, B. J. van der Veken, W. A. Herrebout, J. Phys. Chem. A, 1999, 103, 6142.

    Article  CAS  Google Scholar 

  42. A. J. Barnes, S. Holroyd, Specrochim. Acta, A, 1983, 39, 579.

    Article  Google Scholar 

  43. Y. Ge, M. S. Gordon, F. Battaglia, R. O. Fox, J. Phys. Chem. A, 2010, 114, 2384.

    Article  CAS  Google Scholar 

  44. S. H. Schei, Q. Shen, J. Mol. Struct., 1985, 128, 161.

    Article  CAS  Google Scholar 

  45. E. Vajda, J. Tremmel, B. Rozsondai, I. Hargittai, A. K. Mal´tsev, N. D. Kagramanov, O. M. Nefedov, J. Am. Chem. Soc., 1986, 108, 4352.

    Article  CAS  Google Scholar 

  46. A. G. Gershikov, N. Yu. Subbotina, M. Hargittai, J. Mol. Spectrosc., 1990, 143, 293.

    Article  CAS  Google Scholar 

  47. S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, W. G. Mallard, J. Phys. Chem. Ref. Data., 1988, 17, 1.

    Article  Google Scholar 

  48. R. Becerra, R. Walsh, in The Chemistry of Organic Silicon Compounds, Eds Z. Rappoport, Y. Apeloig, John Wiley & Sons, New York, 1998, Vol. 2, Chap. 4, 153.

  49. Y. Ge, M. S. Gordon, F. Battaglia, R. O. Fox, J. Phys. Chem. A, 2007, 111, 1462.

    Article  CAS  Google Scholar 

  50. M. E. Jacox, D. E. Milligan, J. Chem. Phys., 1968, 49, 3130.

    Article  CAS  Google Scholar 

  51. A. K. Mal´tsev, V. A. Korolev, N. D. Kagramanov, O. M. Nefedov, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1983, 32, 975 [Izv. Akad. Nauk SSSR, Ser. Khim., 1983, 1078].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Boganov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences O. G. Sinyashin on the occasion of his 60th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1216–1224, May, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boganov, S.E., Promyslov, V.M., Krylova, I.V. et al. Mechanism of thermal decomposition of allyltrichlorosilane with formation of three labile intermediates: dichlorosilylene, allyl radical, and atomic chlorine. Russ Chem Bull 65, 1216–1224 (2016). https://doi.org/10.1007/s11172-016-1438-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-016-1438-4

Key words

Navigation