Skip to main content
Log in

Computer simulation of the isomerization mechanism and spectral characteristics of spiro[1,3,4]oxadiazines

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Structural and spectral characteristics of spiro[1,3,4]oxadiazines were calculated by density functional theory method (B3LYP/6-311++G(d,p)). It is shown that a fundamental difference of spirooxadiazines from known spirocyclic compounds is that the ring-opened form is more energetically favorable (by 4.9 kcal mol–1) compared to the ring-closed one. The closeness between the total energies of closed and open forms of spirooxadiazines suggests all isomers to coexist in solution. The intramolecular rearrangements of compounds under study associated with bond cleavage—formation are accompanied by overcoming of lower-energy barriers than those in the case of analogous spiropyrans and spiroxazines. The calculated electronic spectra (TD DFT) and overlapping absorption band maxima of the closed and open spirooxadiazine forms suggest a low probability of photoinitiated ring opening—closure in this compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Molecular Switches, Eds B. L. Feringa, W. R. Browne, Vol. 1—2, Wiley-VCH, Weinheim, Germany, 2011.

  2. V. I. Minkin, Russ. Chem. Bull. (Int. Ed.), 2008, 57, 687 [Izv. Akad. Nauk, Ser. Khim., 2008, 673].

    Article  CAS  Google Scholar 

  3. Techniques of Chemistry, Vol. III: Photochromism, Ed. G. H. Brown, Wiley-Interscience, New York, 1971, 853 pp.

  4. Photochromism. Molecules and Systems, Eds H. Dürr, H. Bouas-Laurent, Elsevier, Amsterdam, 1990, 1044 pp.

  5. Organic Photochromic and Thermochromic Compounds, Eds J. C. Crano, R. J. Guglielmetti, Vol. 1—2, Plenum Press, New York, 2000.

  6. G. Bercovic, V. Krongauz, V. Weiss, Chem. Rev., 2000, 100, 1741.

    Article  Google Scholar 

  7. V. Lokshin, A. Samat, A. V. Metelitsa, Russ. Chem. Rev., 2002, 71, 893.

    Article  CAS  Google Scholar 

  8. V. I. Minkin, Chem. Rev., 2004, 104, 2751.

    Article  CAS  Google Scholar 

  9. V. I. Minkin, Russ. Chem. Rev., 2013, 82, 1.

    Article  Google Scholar 

  10. R. Klajn, Chem. Soc. Rev., 2014, 43, 148.

    Article  CAS  Google Scholar 

  11. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, GAUSSIAN 03, Revision E.01, Gaussian, Inc., Wallingford (CT), 2004.

  12. W. Kohn, L. J. Sham, Phys. Rev., 1965, 140, A1133.

    Article  Google Scholar 

  13. A. D. J. Becke, J. Chem. Phys., 1993, 98, 5648.

    Article  CAS  Google Scholar 

  14. V. I. Minkin, A. G. Starikov, R. M. Minyaev, A. A. Starikova, Theor. Exp. Chem. (Engl. Transl.), 2011, 46, 363 [Teor. Eksperim. Khim., 2010, 46, 352].

    Article  CAS  Google Scholar 

  15. A. A. Starikova, R. M. Minyaev, A. G. Starikov, V. I. Minkin, Dokl. Chem. (Engl. Transl.), 2013, 453, 263 [Dokl. Akad. Nauk Khim., 2013, 453, 401].

    CAS  Google Scholar 

  16. A. A. Starikova, R. M. Minyaev, A. G. Starikov, V. I. Minkin, Eur. J. Inorg. Chem., 2013, 4203.

    Google Scholar 

  17. R. M. Minyaev, Russ. Chem. Rev., 1994, 63, 883.

    Article  Google Scholar 

  18. V. Barone, M. Cossi, J. Phys. Chem. A, 1998, 102, 1995.

    Article  CAS  Google Scholar 

  19. Chemcraft, version 1.7, 2013: http://www.chemcraftprog.com.

  20. S. Nakamura, K. Uchida, A. Murakami, M. Irie, J. Org. Chem., 1993, 58, 5543.

    Article  CAS  Google Scholar 

  21. T. Horii, Y. Abe, R. Nakao, J. Photochem. Photobiol. A, 2001, 144, 119.

    Article  CAS  Google Scholar 

  22. V. I. Minkin, A. V. Metelitsa, I. V. Dorogan, B. S. Lukyanov, S. O. Besugliy, J.-C. Micheau, J. Phys. Chem. A, 2005, 109, 9605.

    Article  CAS  Google Scholar 

  23. F. Maurel, J. Aubard, M. Rajzmann, R. Guglielmetti, A. Samat, J. Chem. Soc., Perkin Trans., 2002, 2 1307.

    Article  Google Scholar 

  24. A. Perrier, F. Maurel, E. A. Perpte, V. Wathelet, D. Jacquemin, J. Phys. Chem. A, 2009, 113, 13004.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Starikova.

Additional information

Dedicated to the Academician of the Russian Academy of Sciences N. S. Zefirov on the occasion of his 80th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 0040—0046, January, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minkin, V.I., Starikova, A.A. Computer simulation of the isomerization mechanism and spectral characteristics of spiro[1,3,4]oxadiazines. Russ Chem Bull 65, 40–46 (2016). https://doi.org/10.1007/s11172-016-1262-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-016-1262-x

Keywords

Navigation