Skip to main content
Log in

Evaluation of electron affinities of quinone derivatives by density functional theory

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A series of quinone derivatives with experimentally determined energies of vertical electron capture (E va) and (or) adiabatic electron affinities (E a) are studied by density functional theory on the DFT/B3LYP/6-31G(d) level. The calculated π*-MO energies are linearly correlated with the E va values measured by electron transmission spectroscopy and the E a values known from the electron transfer experiment with a correlation coefficient of 0.997. The adiabatic affinities E a of quinone derivatives can be evaluated with acceptable accuracy by the B3LYP/6-31G(d) method using a scaling procedure with the shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Monks, S. S. Lau, Chem. Res. Toxicol., 1997, 10, 1296.

    Article  CAS  Google Scholar 

  2. R. Jin, J. Li, Chin, J. Chem., 2012, 30, 84.

    Article  CAS  Google Scholar 

  3. E. Vessally, E. Fereyduni, M. Kamaee, S. Moradi, J. Serb. Chem. Soc., 2011, 76, 879.

    Article  CAS  Google Scholar 

  4. A. G. M. Tielens, C. Rotte, J. J. van Hellemond, W. Martin, Trs. Biochem. Sci., 2002, 27, 564.

    Article  CAS  Google Scholar 

  5. M. M. C. Ferreira, Chemosphere, 2001, 44, 125.

    Article  CAS  Google Scholar 

  6. E. Illenberger, J. Momigny, Gaseous Molecular Ions. An Introduction to Elementary Processes Induced by Ionization, Steinkopff Verlag, Darmstadt; Springer-Verlag, New York, 1992, 344 pp.

    Google Scholar 

  7. V. I. Khvostenko, Mass-spektrometriya otritsatel’nykh ionov v organicheskoi khimii [Mass Spectrometry of Negativly Charged Ions in Organic Chemistry], Nauka, Moscow, 1980, 160 pp. (in Russian).

    Google Scholar 

  8. R. R. Corderman, W. C. Lineberger, Ann. Rev. Phys. Chem., 1979, 30, 347.

    Article  CAS  Google Scholar 

  9. P. Kebarle, S. Chowdhury, Chem. Rev., 1987, 7, 513.

    Article  Google Scholar 

  10. G. J. Schulz, Rev. Mod. Phys., 1973, 45, 423.

    Article  CAS  Google Scholar 

  11. K. D. Jordan, P. D. Burrow, Chem. Rev., 1987, 7, 557.

    Article  Google Scholar 

  12. S. S. Staley, J. T. Strnad, J. Phys. Chem., 1994, 98, 116.

    Article  CAS  Google Scholar 

  13. A. M. Scheer, P. D. Burrow, J. Phys. Chem. B, 2006, 110, 17751.

    Article  CAS  Google Scholar 

  14. A. Modelli, Phys. Chem. Chem. Phys., 2003, 5, 2923.

    Article  CAS  Google Scholar 

  15. A. Modelli, L. Mussoni, Chem. Phys., 2007, 332, 367.

    Article  CAS  Google Scholar 

  16. T. Koopmans, Physica Amsterdam., 1934, 1, 104.

    Article  Google Scholar 

  17. J. M. Younkin, L. J. Smith, R. N. Compton, Theor. Chim. Acta., 1976, 41, 157.

    Article  CAS  Google Scholar 

  18. D. A. Chen, G. A. Gallup, J. Chem. Phys., 1990, 93, 8893.

    Article  CAS  Google Scholar 

  19. M. N. Mikhailov, N. D. Chuvylkin, I. V. Mishin, L. M. Kustov, Zh. Fiz. Khim., 2009, 83, 868 [Russ. J. Phys. Chem. (Engl. Transl.), 2009, 83].

    Google Scholar 

  20. K. Aflatooni, B. Hitt, G. A. Gallup, P. D. Burrow, J. Chem. Phys., 2001, 115, 6489.

    Article  CAS  Google Scholar 

  21. K. Aflatooni, G. A. Gallup, P. D. Burrow, J. Phys. Chem. A, 2002, 106, 4703.

    Article  CAS  Google Scholar 

  22. A. Modelli, L. Szepes, Chem. Phys., 2003, 286, 165.

    Article  CAS  Google Scholar 

  23. A. Modelli, L. Mussoni, D. Fabbri, J. Phys. Chem. A, 2006, 110, 6482.

    Article  CAS  Google Scholar 

  24. S. Chowdhury, T. Heinis, E. P. Grimsrud, P. Kebarle, J. Phys. Chem., 1986, 90, 2747.

    Article  CAS  Google Scholar 

  25. T. Heinis, S. Chowdhury, Susannah, L. Scott, P. Kebarle, J. Am. Chem. Soc., 1988, 110, 400.

    Article  CAS  Google Scholar 

  26. A. Modelli, P. D. Burrow, J. Phys. Chem., 1984, 88, 3550.

    Article  CAS  Google Scholar 

  27. S. A. Pshenichnyuk, A. S. Vorob’ev, N. L. Asfandiarov, A. Modelli, J. Chem. Phys., 2010, 132, 244313.

    Article  Google Scholar 

  28. S. A. Pshenichnyuk, A. S. Vorob’ev, A. Modelli, J. Chem. Phys., 2011, 135, 184301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Nafikova.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 0572–0576, March, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nafikova, E.P., Asfandiarov, N.L., Kalimullina, L.R. et al. Evaluation of electron affinities of quinone derivatives by density functional theory. Russ Chem Bull 63, 572–576 (2014). https://doi.org/10.1007/s11172-014-0475-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-014-0475-0

Key words

Navigation