Skip to main content
Log in

Structure of electroactive coatings based on fullerene and its derivatives

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The structures and properties of electroactive coatings based on fullerene and pyridyl-substituted fullerenopyrrolidines were studied using cyclic voltammetry, optical spectroscopy, atomic force microscopy, and other methods. The surface of the electrode of the ITO conducting glass (alloy of indium and tin oxides) was modified by direct casting or the introduction of an electroactive substance into a tetra(n-octyl)ammonium bromide matrix. Changes in the absorption spectra of the coatings agree with the presence of an electronic interaction between adjacent fullerene molecules. Tetra(n-octyl)ammonium bromide is involved in the organization of the fullerene-containing coatings with retention of the layered structure. According to the data of atomic force microscopy, the coating surface depends on both the composition of the solution and preparation method and the nature of addends in a C60 molecule. The dispersion of fullerene in the tetra(n-octyl)ammonium bromide matrix and its interaction with the alkyl groups of the latter provide the hydrophobic microenvironment necessary for reversible electrochemical processes in an aqueous solution to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. El-Khouly, O. Ito, P. M. Smith, F. D’souza, J. Photochem. Photobiol. C: Photochem. Rev., 2004, 5, 75.

    Google Scholar 

  2. D. M. Guldi, Chem. Soc. Rev., 2002, 31, 22.

    Article  CAS  Google Scholar 

  3. H. Hoppe, N. S. Sariciftci, J. Mater. Chem., 2006, 16, 45.

    Article  CAS  Google Scholar 

  4. H. Hoppe, N. S. Sariciftci, J. Mater. Res., 2004, 19, 1924.

    Article  CAS  Google Scholar 

  5. B. Sherigara, W. Kutner, F. D’souza, Electroanalysis, 2003, 15, 753.

    Article  CAS  Google Scholar 

  6. K. Asaka, A. Ottova, H. T. Tien, Thin Solid Films, 1999, 354, 201.

    Article  CAS  Google Scholar 

  7. N. F. Gol’dshleger, E. V. Ovsyannikova, A. N. Lapshin, O. N. Efimov, R. N. Lyubovskaya, N. M. Alpatova, Elektrokhimiya, 2006, 42, 853 [Russ. J. Electrochem., 2006, 42 (Engl. Transl.)].

    Google Scholar 

  8. P. A. Troshin, A. I. Troyanov, G. N. Boiko, R. N. Lyubovskaya, A. N. Lapshin, N. F. Goldshleger, Fullerenes, Nanotubes, Carbon Nanostruct., 2004, 12, 435.

    Google Scholar 

  9. L. P. Safonova, E. V. Svetsova, M. G. Kiselev, J. Solut. Chem., 2005, 34, 2005.

    Article  Google Scholar 

  10. K. Okuyama, Y. Soboi, K. Hirabayashi, A. Harada, A. Kumano, T. Kaziyama, M. Takayanagi, T. Kunitake, Chem. Lett., 1984, 2117.

  11. M. Tominaga, S. Hashimoto, N. Nakashima, J. Electroanal. Chem., 2004, 561, 13.

    Article  CAS  Google Scholar 

  12. N. F. Gol’dshleger, A. N. Lapshin, E. I. Yudanova, N. M. Alpatova, E. V. Ovsyannikova, Elektrokhimiya, 2006, 42, 19 [Russ. J. Electrochem., 2006, 42 (Engl. Transl.)].

    Google Scholar 

  13. F. Song, L. Echegoyen, J. Phys. Chem. B, 2003, 107, 5844.

    Article  CAS  Google Scholar 

  14. T. Nakanishi, H. Ohwaki, H. Tanaka, H. Murakami, T. Sagara, N. Nakashima, J. Phys. Chem. B, 2004, 106, 7754.

    Article  Google Scholar 

  15. M. F. Suárez, F. Marken, R. G. Compton, A. M. Bond, W. Miao, C. L. Raston, J. Phys. Chem., 1999, 103, 5637.

    Google Scholar 

  16. W. T. Tan, E. B. Lin, A. M. Bond, J. Solid State Electrochem., 2003, 7, 134.

    CAS  Google Scholar 

  17. K. Sawada, T. Sohara, J. Chem. Soc., Faraday Trans., 1995, 91, 643.

    Article  CAS  Google Scholar 

  18. K. Sawada, E. Takahashi, T. Horie, K. Satoh, Monatsh. Chem., 2001, 132, 1439.

    CAS  Google Scholar 

  19. H. Liu, G.-H. Tao, D. E. Evans, Y. Kou, Carbon, 2005, 43, 1782.

    Article  CAS  Google Scholar 

  20. S.-Z. Kang, S.-L. Xu, H.-M. Zhang, L.-B. Gan, C. Wang, L.-J. Wan, C.-L. Bai, Surface Sci., 2003, 536, L408.

    Article  CAS  Google Scholar 

  21. G. Possamai, N. Camaioni, G. Ridolfi, L. Franco, M. Ruzzi, E. Menna, G. Casalbore-Miceli, A.-M. Fichera, G. Scorrano, C. Corvaja, M. Maggini, Synth. Met., 2003, 139, 585.

    Article  CAS  Google Scholar 

  22. R. Giovanni, N. Camaioni, G. Casalbore-Miceli, A. M. Fichera, M. Maggini, G. Possamai, J. Solid State Electrochem., 2004, 8, 277.

    Article  Google Scholar 

  23. S. Wu, F. Zeng, H. Zhu, Z. Tong, Macromolecules, 2006, 39, 2606.

    Article  CAS  Google Scholar 

  24. A. F. Thünemann, Prog. Polym. Sci., 2002, 27, 1473.

    Article  Google Scholar 

  25. N. Nakashima, Y. Nonaka, T. Nakanishi, T. Sagara, H. Murakami, J. Phys. Chem., 1998, 102, 7328.

    CAS  Google Scholar 

  26. A. L. Swint, P. W. Bohn, Langmuir, 2004, 20, 4076.

    Article  CAS  Google Scholar 

  27. G. Girishkumar, K. Vinodgopal, P. V. Kamat, J. Phys. Chem. B, 2004, 108, 19960.

    Article  CAS  Google Scholar 

  28. L. Li, H. Davande, D. Bedrov, G. D. Smith, J. Phys. Chem. B, 2007, 111, 4067.

    Article  CAS  Google Scholar 

  29. M. X. Li, J. X. Wang, B. Y. Sun, N. Q. Li, Z. N. Gu, J. Electroanal. Soc., 2004, 151, E271.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Goldshleger.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 308–315, February, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldshleger, N.F., Lapshin, A.N., Zolotarevskii, V.I. et al. Structure of electroactive coatings based on fullerene and its derivatives. Russ Chem Bull 57, 316–323 (2008). https://doi.org/10.1007/s11172-008-0049-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-008-0049-0

Key words

Navigation