Skip to main content
Log in

MoS2 single slab as a model for active component of hydrodesulfuration catalyst: a quantum chemical study 1. Molecular and electronic structure of Mo12S24 macromolecule and its adsorption complex with H2S

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The molecular and electronic structure of Mo12S24 macromolecule as the MoS2 single slab structure was calculated by the density functional theory (DFT) method with the B3P86 hybrid exchange-correlation functional. The results of calculations point to slight relaxation of coordinatively unsaturated Mo and S atoms, which is consistent with the published data. The calculated width of the forbidden band (0.85–0.98 eV) is comparable with the experimental value (1.30 eV) and similar to that obtained from DFT calculations with periodic boundary conditions (0.89 eV). The surface Mo centers in the Mo12S24 macromolecule are more reduced than the internal (MoIV) atoms. In order to characterize the adsorption capacity of coordinatively unsaturated Mo centers, a Mo12S24·6H2S adsorption complex was calculated. The structure and energy characteristics of the adsorption complex point to a weak donor-acceptor interaction of the π-lone pair of H2S molecule with the surface (reduced) Mo centers. The active center of thiophene hydrodesulfuration catalysts is formed as a result of the oxidative addition of hydrogen followed by occlusion of hydrogen into the MoS2 matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Startsev, Catal. Rev. Sci. Eng., 1995, 37, 353.

    CAS  Google Scholar 

  2. A. N. Startsev and I. I. Zakharov, Usp. Khim., 2003, 72, 579 [Russ. Chem. Rev., 2003, 72 (Engl. Transl.)].

    Google Scholar 

  3. P. Joensen, R. F. Frindt, and S. R. Morrison, Mater. Res. Bull., 1986, 21, 457.

    Article  CAS  Google Scholar 

  4. E. Benavente, M. A. Santa Ana, F. Mendizabal, and G. Gonzalez, Coord. Chem. Rev., 2002, 224, 877.

    Article  Google Scholar 

  5. A. S. Golub’, Ya. V. Zubavichus, Yu. L. Slovokhotov, and Yu. N. Novikov, Usp. Khim., 2003, 72, 138 [Russ. Chem. Rev., 2003, 72 (Engl. Transl.)].

    Google Scholar 

  6. A. S. Golub’, Ya. V. Zubavichus, N. D. Lenenko, Yu. L. Slovokhotov, M. Dano, and Yu. N. Novikov, Izv. Akad. Nauk, Ser. Khim., 2001, 2191 [Russ. Chem. Bull., Int. Ed., 2001, 50, 2293].

    Google Scholar 

  7. X. Ma and H. H. Schobert, J. Mol. Catal. A: Chem., 2000, 160, 409.

    Article  CAS  Google Scholar 

  8. P. Faye, E. Payen, and D. Bougeard, J. Catal., 1998, 179, 560.

    Article  CAS  Google Scholar 

  9. P. Faye, E. Payen, and D. Bougeard, J. Catal., 1999, 183, 396.

    Article  CAS  Google Scholar 

  10. Y.-W. Li, X.-Y. Pang, and B. Delmon, J. Phys. Chem. A, 2000, 104, 11375.

    Google Scholar 

  11. H. Orita, K. Uchida, and N. Itoh, J. Mol. Catal. A: Chem., 2003, 195, 173.

    Article  CAS  Google Scholar 

  12. J. P. Perdew, Phys. Rev., 1986, B33, 8822.

    Google Scholar 

  13. A. D. Becke, J. Chem. Phys., 1993, 98, 1372.

    CAS  Google Scholar 

  14. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270.

    CAS  Google Scholar 

  15. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. W. Wong, J. B. Foresman, M. A. Robb, M. Head-Gordon, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, Gaussian 92/DFT, Revision G. 2, Gaussian, Inc., Pittsburgh (PA), 1993.

    Google Scholar 

  16. I. I. Zakharov, A. N. Startsev, G. M. Zhidomirov, and V. N. Parmon, J. Mol. Catal. A: Chem., 1999, 137, 101.

    Article  CAS  Google Scholar 

  17. P. Raybaud, J. Hafner, G. Kresse, and H. Toulhoat, Surf. Sci., 1998, 407, 237.

    Article  CAS  Google Scholar 

  18. P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan, and H. Toulhoat, J. Catal., 2000, 189, 129.

    Article  CAS  Google Scholar 

  19. J. Polz, H. Zeilinger, B. Muller, and H. Knozinger, J. Catal., 1989, 120, 22.

    Article  CAS  Google Scholar 

  20. I. I. Zakharov, V. I. Avdeev, and G. M. Zhidomirov, Surf. Sci., 1992, 227, 407.

    Google Scholar 

  21. R. J. Angelici and M. A. Reynolds, Abstrs Int. Symp. “Molecular Aspects of Catalysis by Sulfides” (St. Petersburg, Russia, October 6–9, 1998), Novosibirsk, 1998, OP-2.

  22. A. Sierraalta, A. Herize, and R. Anez, J. Phys. Chem. A, 2001, 105, 6519.

    Article  CAS  Google Scholar 

  23. I. I. Zakharov and A. N. Startsev, Tez. dokl. VI Ros. konf. “Mekhanizmy kataliticheskikh reaktsii” [Abstrs VIth Russ. Conf. “Mechanisms of Catalytuc Reactions”] (Moscow, October 1–5, 2002), Novosibirsk, 2002, PP-76 (in Russian).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2189–2193, October, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, I.I., Startsev, A.N. MoS2 single slab as a model for active component of hydrodesulfuration catalyst: a quantum chemical study 1. Molecular and electronic structure of Mo12S24 macromolecule and its adsorption complex with H2S. Russ Chem Bull 54, 2259–2263 (2005). https://doi.org/10.1007/s11172-006-0107-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-006-0107-4

Key words

Navigation