Skip to main content
Log in

Thermodynamics of the effects of substituent, degree of substitution, and pH on complex formation of hydroxypropyl-α- and hydroxypropyl-β-cyclodextrins with ascorbic acid

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The interaction of ascorbic acid with hydroxypropyl-α- and hydroxypropyl-β-cyclodextrins of different degree of substitution was studied at 298.15 K and different pH using solution calorimetry. In an aqueous solution, only hydroxypropyl-β-cyclodextrins form weak molecular complexes with the nonionized form of ascorbic acid. The thermodynamic functions of complex formation and stability constants of the complexes were calculated. The systems with weak intermolecular interaction without complex formation were characterized by enthalpic virial coefficients. On the basis of the obtained thermodynamic characteristics it was shown that the selectivity of complex formation of hydroxypropyl-α- and hydroxypropyl-β-cyclodextrins with ascorbic acid is determined by the size of the macrocyclic cavity, the presence of the hydroxypropyl substituent, and the medium acidity. The degree of substitution of hydroxypropyl-β-cyclodextrins exerts no substantial effect on the thermodynamic parameters of interaction with ascorbic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. T. Berezov and B. F. Korovkin, Biologicheskaya khimiya [Biological Chemistry], Meditsina, Moscow, 1982, 752 pp. (in Russian).

    Google Scholar 

  2. M. Levine, New Engl. J. Med., 1986, 314, 892.

    CAS  Google Scholar 

  3. R. J. Wilson, A. E. Beezer, and J. C. Mitchell, Thermochim. Acta, 1995, 264, 27.

    Article  CAS  Google Scholar 

  4. M. V. Rekharsky and Y. Inoue, Chem. Rev., 1998, 98, 1875.

    Article  CAS  Google Scholar 

  5. K. A. Connors, Chem. Rev., 1997, 97, 1325.

    Article  CAS  Google Scholar 

  6. A. R. Hedges, Chem. Rev., 1998, 98, 2035.

    Article  CAS  Google Scholar 

  7. I. V. Terekhova, O. V. Kulikov, and E. S. Titova, Thermochim. Acta, 2004, 412, 121.

    Article  CAS  Google Scholar 

  8. I. V. Terekhova and O. V. Kulikov, Mendeleev Commun., 2002, 111.

  9. New Trends in Cyclodextrins and Derivatives, Ed. D. Duchene, Editions de Sante, Paris, 1991.

    Google Scholar 

  10. C. E. Strattan, Pharm. Technol., 1992, 2, 52.

    Google Scholar 

  11. C. T. Rao, B. Lindberg, and J. Pitha, J. Org. Chem., 1991, 56, 1327.

    CAS  Google Scholar 

  12. J. Pitha, C. T. Rao, B. Lindberg, and P. Seffers, Carbohydr. Res., 1990, 200, 429.

    Article  CAS  Google Scholar 

  13. I. V. Terekhova and O. V. Kulikov, Izv. Akad. Nauk, Ser. Khim., 1999, 12, 2285 [Russ. Chem. Bull., 1999, 48, 2259 (Engl. Transl.)].

    Google Scholar 

  14. S. R. Brinkley, Jr., J. Chem. Phys., 1947, 15, 107.

    CAS  Google Scholar 

  15. V. A. Borodin, V. P. Vasil'ev, and E. V. Kozlovskii, in Matematicheskie zadachi khimicheskoi termodinamiki [Mathematical Problems of Chemical Thermodynamics], Nauka, Novosibirsk, 1985, 219 (in Russian).

    Google Scholar 

  16. J. Fernandez and T. H. Lilley, J. Chem. Soc., Faraday Trans., 1992, 88, 2503.

    Article  CAS  Google Scholar 

  17. W. G. McMillan and J. E. Mayer, J. Chem. Phys., 1945, 13, 276.

    Article  CAS  Google Scholar 

  18. J. E. Desnoyers, G. Perron, L. Avedikian, and J. P. Morel, J. Solut. Chem., 1976, 5, 631.

    CAS  Google Scholar 

  19. V. A. Borodin, E. V. Kozlovskii, and V. P. Vasil'ev, Zh. Neorg. Khim., 1982, 27, 2169 [J. Inorg. Chem. USSR, 1982, 27 (Engl. Transl.)].

    CAS  Google Scholar 

  20. E. Junquera and E. Aicart, J. Inclus. Phenom. Mol. Recogn. Chem., 1997, 29, 119.

    CAS  Google Scholar 

  21. Y. Dotsikas and Y. L. Loukas, J. Biochem. Biophys. Methods, 2002, 52, 121.

    Article  CAS  Google Scholar 

  22. B. Cappello, C. di Miao, and M. Iervolino, J. Inclus. Phenom. Macrocycl. Chem., 2002, 43, 251.

    CAS  Google Scholar 

  23. A. Buvari-Barcza and L. Barcza, Talanta, 1999, 49, 577.

    CAS  Google Scholar 

  24. M. D. Gaye Seye, C. Prot, A. Adenier, J.-J. Aaron, and N. Motohashi, New J. Chem., 2001, 25, 1290.

    Google Scholar 

  25. L. Martin, A. Leon, A. I. Olives, B. del Castillo, and M. A. Martin, Talanta, 2003, 60, 493.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1828–1831, August, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terekhova, I.V., Obukhova, N.A., Agafonov, A.V. et al. Thermodynamics of the effects of substituent, degree of substitution, and pH on complex formation of hydroxypropyl-α- and hydroxypropyl-β-cyclodextrins with ascorbic acid. Russ Chem Bull 54, 1883–1886 (2005). https://doi.org/10.1007/s11172-006-0053-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-006-0053-1

Key words

Navigation