Skip to main content

Advertisement

Log in

An Experienced Science Teacher’s Metavisualization in the Case of the Complex System of Carbon Cycling

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

Science teachers use a large number of visual representations and models in science classes to guide students to understand complex phenomena and to learn to conduct scientific inquiry. Fluent formation and use of visual representation involves metavisualization, which is a process related to metacognition and visualization. However, what kinds of knowledge and skills are involved and interact during successful metavisualization need further research. Moreover, teachers’ metavisualization should be a focus of research since teachers play a mediating role in guiding students to become proficient performers of visualization in science. Therefore, in this study, we investigated how an experienced science teacher performed metavisualization via qualitative data collection techniques including think-aloud tasks and a follow-up retrospective interview. We identified the relevant knowledge and skills that were involved in the teacher’s metavisualization. Moreover, by focusing on the interaction among the knowledge and skills, we observed three aspects of the teacher’s performance that were salient to her metavisualization, including the use of metavisual strategies, judgement criteria, and the encountered critical points. Drawing upon previous perspectives and this study’s findings, we propose a model of metavisualization by extending an existing model for further research. The findings also provide insight into teacher professional development programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ainsworth, S., & Newton, L. (2014). Teaching and researching visual representations: shared vision or divided worlds? In B. Eilam & J. K. Gilbert (Eds.), Science teachers’ use of visual representations (pp. 29–49). New York: Springer.

    Google Scholar 

  • Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333(6046), 1096–1097.

    Article  Google Scholar 

  • Basu, S., Sengupta, P., & Biswas, G. (2014). A scaffolding framework to support learning of emergent phenomena using multi-agent-based simulation environments. Research in Science Education, 45(2), 293–324. https://doi.org/10.1007/s11165-014-9424-z.

  • Bergqvist, A., Drechsler, M., & Chang Rundgren, S. N. (2016). Upper secondary teachers’ knowledge for teaching chemical bonding models. International Journal of Science Education, 38(2), 298–318. https://doi.org/10.1080/09500693.2015.1125034.

    Article  Google Scholar 

  • Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2008). An evaluation of a teaching intervention to promote students’ ability to use multiple levels of representation when describing and explaining chemical reactions. Research in Science Education, 38(2), 237–248. https://doi.org/10.1007/s11165-007-9046-9.

    Article  Google Scholar 

  • Chang, H.-Y., & Tzeng, S.-F. (2017). Investigating Taiwanese students’ visualization competence of matter at the particulate level. International Journal of Science and Mathematics Education., 16, 1207–1226. https://doi.org/10.1007/s10763-017-9834-2.

    Article  Google Scholar 

  • Chang, H.-Y., Quintana, C., & Krajcik, J. S. (2014). Using drawing technology to assess students’ visualizations of chemical reaction processes. Journal of Science Education and Technology, 23(3), 355–369.

    Article  Google Scholar 

  • Chittleborough, G., & Treagust, D. (2008). Correct interpretation of chemical diagrams requires transforming from one level of representation to another. Research in Science Education, 38(4), 463–482. https://doi.org/10.1007/s11165-007-9059-4.

    Article  Google Scholar 

  • Chiu, J., & Linn, M. C. (2012). The role of self-monitoring in learning chemistry with dynamic visualizations. In A. Zohar & Y. J. Dori (Eds.), Metacognition in science education (pp. 133–163). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Clark, C. M., & Peterson, P. L. (1986). Teachers’ thought processes. In M. C. Wittrock (Ed.), Handbook of research on teaching (3rd Ed.) (pp. 255–296). New York: Macmillan.

    Google Scholar 

  • diSessa, A. A. (2004). Metarepresentation native competence and targets for instruction. Cognition and Instruction, 22(3), 293–331.

    Article  Google Scholar 

  • Danusso, L., Testa, I., & Vicentini, M. (2010). Improving prospective teachers’ knowledge about scientific models and modelling: design and evaluation of a teacher education intervention. International Journal of Science Education, 32, 871–905.

    Article  Google Scholar 

  • Eilam, B. (2015). Promoting preservice teachers’ meta-representational (visual) competencies: the need for a new pedagogy. In C. J. Craig & L. Orland-Barak (Eds.), International teacher education: promising pedagogies (part C). (Advances in research on teaching, Volume 22C) (pp. 65–88) Emerald Group Publishing Limited.

  • Eilam, B., & Gilbert, J. K. (2014). The significance of visual representations in the teaching of science. In B. Eilam & J. K. Gilbert (Eds.), Science teachers’ use of visual representations (pp. 3–28). New York: Springer.

    Google Scholar 

  • Esiobu, O. G., & Soyibo, K. (1995). Effects of concept and Vee mapping under three learning modes on students’ cognitive achievement an ecology and genetics. Journal of Research in Science Teaching, 32(9), 971–995.

    Article  Google Scholar 

  • Ferreira, C., Baptista, M., & Arroio, A. (2011). Visual tools in teaching learning sequences for science education. Problems of Education in the 21st Century, 37, 48–58.

  • Flavell, J. H. (1976). Metacognitive aspects of problem-solving. In L. Resnick (Ed.), The nature of intelligence. Hillsdale: Erlbaum Assoc.

    Google Scholar 

  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education (8th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Gilbert, J. K. (2005). Visualization: a metacognitive skill in science and science education. In J. K. Gilbert (Ed.), Visualization in science education (Vol. 1, pp. 9–27). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Gilbert, J. K. (2008). Visualization: an emergent field of practice and enquiry in science education. In J. K. Gilbert (Ed.), Visualization: theory and practice in science education (pp. 3–24). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Gilbert, J. K., & Eilam, B. (2014). Developing science teachers’ representational competence and its impact on their teaching. In B. Eilam & J. K. Gilbert (Eds.), Science teachers’ use of visual representations (pp. 315–329). New York: Springer.

    Google Scholar 

  • Glaser, B. G., & Strauss, A. L. (1967). Discovery of grounded theory: strategies for qualitative research. Chicago: Aldine.

    Google Scholar 

  • Grbich, C. (2013). Qualitative data analysis: an introduction (2nd ed.). London, United Kingdom: Sage.Henze, I., van Driel, J. H., & Verloop, N. (2007). Science teachers’ knowledge about teaching models and modelling in the context of a new syllabus on public understanding of science. Research in Science Education, 37(2), 99–122. https://doi.org/10.1007/s11165-006-9017-6.

    Article  Google Scholar 

  • Henze, I., van Driel, J. H., Verloop, N. (2007) Science Teachers' Knowledge about Teaching Models and Modelling in the Context of a New Syllabus on Public Understanding of Science. Research in Science Education 37 (2):99–122.

  • Herrlinger, S., Höffler, T. N., & Opfermann, M. (2017). When do pictures help learning from expository text? Multimedia and modality effects in primary schools. Research in Science Education, 47(3), 685–704. https://doi.org/10.1007/s11165-016-9525-y.

    Article  Google Scholar 

  • Hofer, B. (2004). Epistemological understanding as a metacognitive process: thinking aloud during online searching. Educational Psychologist, 39(1), 43–55.

    Article  Google Scholar 

  • Hubber, P., Tytler, R., & Haslam, F. (2010). Teaching and learning about force with a representational focus: pedagogy and teacher change. Research in Science Education, 40(1), 5–28. https://doi.org/10.1007/s11165-009-9154-9.

    Article  Google Scholar 

  • Justi, R. (2009). Learning how to model in science classroom: key teacher’s role in supporting the development of students’ modelling skills. Educación Química, 20(1), 32–40.

    Article  Google Scholar 

  • Justi, R., & Gilbert, J. K. (2002). Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369–387.

    Article  Google Scholar 

  • Justi, R., & Gilbert, J. K. (2003). Teachers’ views on the nature of models. International Journal of Science Education, 25(11), 1369–1386. https://doi.org/10.1080/0950069032000070324.

    Article  Google Scholar 

  • Justi, R., & van Driel, J. (2005). A case study of the development of a beginning chemistry teacher’s knowledge about models and modelling. Research in Science Education, 35(2–3), 197–219. https://doi.org/10.1007/s11165-004-7583-z.

    Article  Google Scholar 

  • Kambouri, M., Salowm Pampoulou, E., Pieridou, M., & Allen, M. (2016). Science learning and graphic symbols: an exploration of early years teachers’ views and use of graphic symbols when teaching science. Eurasia Journal of Mathematics, Science and Technology Education, 12(9), 2399–2417. ISSN 1305–8223 https://doi.org/10.12973/eurasia.2016.1275a

  • Koomen, M. H., Weaver, S., Blair, R. B., & Oberhauser, K. S. (2016). Disciplinary literacy in the science classroom: using adaptive primary literature. Journal of Research in Science Teaching, 53(6), 847–894. https://doi.org/10.1002/tea.21317.

    Article  Google Scholar 

  • Lazarowitz, R., & Penso, S. (1992). High school students’ difficulties in learning biology concepts. Journal of Biological Education, 26(3), 215–223.

    Article  Google Scholar 

  • Lin, C.-Y., & Hu, R. (2003). Students’ understanding of energy flow and matter cycling in the context of the food chain, photosynthesis, and respiration. International Journal of Science Education, 25(12), 1529–1544.

    Article  Google Scholar 

  • Locatelli, S., & Arroio, A. (2014). Metavisual strategy assisting the learning of initial concepts of electrochemistry. Natural Science Education, 1(39), 14–24.

    Google Scholar 

  • Locatelli, S., & Arroio, A. (2015a). Metavisuali strategy for the build and rebuilding of chemical concepts in the symbolic level with the assistance of image. Natural Science Education, 12(2), 65–74.

    Google Scholar 

  • Locatelli, S., & Arroio, A. (2015b). Some contributions of metavisualization in chemical education: a new field of research. Research and Practice in Math, Science and Technology Education, 3(4), 573–582.

    Google Scholar 

  • Locatelli, S., & Arroio, A. (2016). Contributions and limitations of a metavisual strategy from the perspective of students. In J. Lavonen, K. Juuti, J. Lampiselkä, A. Uitto, & K. Hahl (Eds.), Electronic proceedings of the ESERA 2015 Conference. Science education research: engaging learners for a sustainable future, part 3/3 (Sabine Fechner & Andrée Tiberghien) (pp. 437–442). Helsinki, Finland: University of Helsinki. isbn:978-951-51-1541-6.

  • Locatelli, S., Ferreira, C., & Arroio, A. (2010). Metavisualization: an important skill in the learning chemistry. Problems of Education in the 21st Century, 24, 75–83.

  • Mansour, N. (2013). Modelling the sociocultural contexts of science education: the teachers’ perspective. Research in Science Education, 43, 347–369. https://doi.org/10.1007/s11165-011-9269-7.

    Article  Google Scholar 

  • Melo-Nino, L. V., Canada, F., & Mellado, V. (2017). Initial characterization of colombian high school physics teachers’ pedagogical content knowledge on electric fields. Research in Science Education, 47(1), 25–48. https://doi.org/10.1007/s11165-015-9488-4.

    Article  Google Scholar 

  • Ministry of Education (MOE). (2014). Curriculum outlines of the 12-year basic education curriculum-the master outline. National Research Council Press, Taipei.

  • Mohan, L., Chen, J., & Anderson, C. W. (2009). Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching, 46(6), 675–698.

    Article  Google Scholar 

  • National Academy for Educational Research (NAER). (2016). Curriculum outlines of the 12-year basic education curriculum-natural science (draft). National Academy for Educational Research, Taipei.

  • National Research Council (NRC). (2007). Taking science to school: learning and teaching science in grades K–8. Washington, DC: National Academies Press.

    Google Scholar 

  • National Research Council (NRC). (2012). A framework for K-12 science education: practices, crosscutting concepts. In And core idea. Washington: The National Academy Press.

    Google Scholar 

  • Nichols, K., Stevenson, M., Hedberg, J., & Gillies, R. (2016). Primary teachers’ representational practices: from competency to fluency. Cambridge Journal of Education, 46(4), 509–531.

    Article  Google Scholar 

  • Oliveira, A. W., Rivera, S., Glass, R., Mastroianni, M., Wizner, F., & Amodeo, V. (2014). Multimodal semiosis in science read-alouds: extending beyond text delivery. Research in Science Education, 44(5), 651–673. https://doi.org/10.1007/s11165-013-9396-4.

    Article  Google Scholar 

  • Rapp, D. N., & Kurby, C. A. (2008). The ‘ins’ and ‘outs’ of learning: internal representations and external visualizations. In J. K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: theory and practice in science education (pp. 29–52). United Kingdom: Springer.

    Chapter  Google Scholar 

  • Schwarz, C., & White, B. (2005). Meta-modeling knowledge: developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2), 165–205.

    Article  Google Scholar 

  • Shulman, L. S. (1987). Knowledge and teaching: foundations of the new reform. Harvard Educational Review, 57, 1–22.

    Article  Google Scholar 

  • Simons, H. (2015). Interpret in context: generalizing from the single case in evaluation. Evaluation, 21, 173–188. https://doi.org/10.1177/1356389015577512.

    Article  Google Scholar 

  • Strauss, A., & Corbin, J. (1990). Basics of qualitative research: grounded theory procedures and techniques. Newbury Park: Sage.

    Google Scholar 

  • Taber, K. S. (2000). Case studies and generalizability: grounded theory and research in science education. International Journal of Science Education, 22(5), 469–487. https://doi.org/10.1080/095006900289732.

    Article  Google Scholar 

  • Tytler, R., Prain, V., & Peterson, S. (2007). Representational issues in students learning about evaporation. Research in Science Education, 37(3), 313–331. https://doi.org/10.1007/s11165-006-9028-3.

    Article  Google Scholar 

  • Uttal, D. H., & O’Doherty, K. (2008). Comprehending and learning from ‘visualizations’: a developmental perspective. In J. K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: theory and practice in science education (pp. 53–72). The Netherlands: Springer.

    Chapter  Google Scholar 

  • van Driel, J. H., & Verloop, N. (2002). Experienced teachers’ knowledge of teaching and learning of models and modelling in science education. International Journal of Science Education, 24(12), 1255–1272.

    Article  Google Scholar 

  • Vijapurkar, J., Kawalkar, A., & Nambiar, P. (2014). What do cells really look like? An inquiry into students’ difficulties in visualising a 3-D biological cell and lessons for pedagogy. Research in Science Education, 44(2), 307–333. https://doi.org/10.1007/s11165-013-9379-5.

    Article  Google Scholar 

  • Waight, N., & Gillmeister, K. (2014). Teachers and students’ conceptions of computer-based models in the context of high school chemistry: elicitations at the pre-intervention stage. Research in Science Education, 44(2), 335–361. https://doi.org/10.1007/s11165-013-9385-7.

    Article  Google Scholar 

  • Wada, I., Miyamura, R., Sawada, K., & Morimoto, S. (2015). Analysis of effects of social interaction on metavisualization in science learning. Journal of Research in Science Education, 56(1), 75–92.

    Article  Google Scholar 

  • Waldrip, B., Prain, V., & Carolan, J. (2010). Using multi-modal representations to improve learning in junior secondary science. Research in Science Education, 40(1), 65–80. https://doi.org/10.1007/s11165-009-9157-6.

    Article  Google Scholar 

  • Wang, C. Y., & Barrow, L. H. (2011). Characteristics and levels of sophistication: an analysis of chemistry students’ ability to think with mental models. Research in Science Education, 41(4), 561–586. https://doi.org/10.1007/s11165-010-9180-7.

    Article  Google Scholar 

  • Yin, R. (1984). Case study research: design and methods (1st ed.). Beverly Hills: Sage Publishing.

    Google Scholar 

  • Zhang, Z. H., & Linn, M. C. (2011). Can generating representations enhance learning with dynamic visualizations? Journal of Research in Science Teaching, 48(10), 1177–1198.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kao-Chi Hsu for help with the data collection. This material is based upon work supported by the Ministry of Science and Technology, Taiwan, under grant MOST103-2511-S-003-070-MY5. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Ministry of Science and Technology, Taiwan. This work was also financially supported by the "Institute for Research Excellence in Learning Sciences" of National Taiwan Normal University (NTNU) from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

Jung-Yi Hung participated in the data collection and data analysis. Hsin-Yi Chang collaborated with Jung-Yi Hung by participating in the data analysis, and assertion, framework, and model generation processes. Jeng-Fung Hung helped with the data analysis. All the authors jointly conceived of this study, and participated in its design and wrote the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Hsin-Yi Chang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.All the authors claim that none of the material in the manuscript has been published or is under consideration for publication elsewhere.

Appendix

Appendix

Table 2

Table 2 Coding scheme for the teacher’s metavisualization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, JY., Chang, HY. & Hung, JF. An Experienced Science Teacher’s Metavisualization in the Case of the Complex System of Carbon Cycling. Res Sci Educ 51, 493–521 (2021). https://doi.org/10.1007/s11165-018-9804-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-018-9804-x

Keywords

Navigation