Skip to main content

Advertisement

Log in

Fostering Upper Secondary Students’ Ability to Engage in Practices of Scientific Investigation: a Comparative Analysis of an Explicit and an Implicit Instructional Approach

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

Inquiry-based teaching is considered as contributing to content-related, procedural, and epistemic learning goals of science education. In this study, a quasi-experimental research design was utilized to investigate to what extent embedding inquiry activities in an explicit and an implicit instructional approach fosters students’ ability to engage in three practices of scientific investigation (POSI): (1) formulating questions and hypotheses, (2) planning investigations, (3) analyzing and interpreting data. Both approaches were implemented in a classroom-based intervention conducted in a German upper secondary school (N = 222). Students’ procedural knowledge of the three POSI was assessed with a paper-pencil test prior and post to the intervention, their content knowledge and dispositional factors (e.g., cognitive abilities) were gathered once. Results show that not only explicit but also implicit instruction fosters students’ knowledge of POSI. While overall explicit instruction was found to be more effective, the findings indicate that the effectiveness depends considerably on the practice addressed. Moreover, findings suggest that both approaches were equally beneficial for all students regardless of their prior content knowledge and their prior procedural knowledge of POSI. Potential conditions for the success of explicit and implicit approaches as well as implications for instruction on POSI in science classrooms and for future research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We did not address “carrying out investigations,” as it is assumed that corresponding abilities cannot be assessed sufficiently with paper-pencil based instruments (e.g., Ruiz-Primo and Shavelson 1996; Schreiber et al. 2014).

  2. A retest effect upon test takers is an issue that can impact data analysis and potentially leads to an over-estimation of effect sizes. However, the comparison of the increase in the treatment and the control is not affected by this issue as even if a retest effect exists this effect would be affecting both groups similarly.

  3. Before conducting the regressions for the control group, two students were excluded from analysis. These students exhibited very high pretest POSI measure but also a large decrease in posttest POSI measure (student 1: pretest measure: 689.46, pre to post difference − 119.46, z-standardized residual − 2.20; student 2: pretest measure 743.70, pre to post difference − 125.92, z-standardized residual − 2.29) and distorted regression results. We assume that these two students were not committed to answering the posttest.

References

  • ACARA. (2015). The Australian Curriculum: Science Version, 8.0 Retrieved from http://www.australiancurriculum.edu.au/download/f10

  • Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103(1), 1–18. https://doi.org/10.1037/a0021017

    Article  Google Scholar 

  • Alonzo, A. C., & Steedle, J. T. (2009). Developing and assessing a force and motion learning progression. Science Education, 93(3), 389–421. https://doi.org/10.1002/sce.20303

    Article  Google Scholar 

  • Arnold, J. C., Kremer, K., & Mayer, J. (2014). Understanding students’ experiments—what kind of support do they need in inquiry tasks? International Journal of Science Education, 36(16), 2719–2749. https://doi.org/10.1080/09500693.2014.930209

    Article  Google Scholar 

  • Baumert, J., Lehmann, R., Lehrke, M., Clausen, M., Hosenfeld, I., Neubrand, J., et al. (1998). Testaufgaben der Naturwissenschaften TIMSS 7./8. Klasse (Population 2) [Assessment items for science TIMSS K7/K8]. Berlin: Max-Planck-Institut für Bildungsforschung.

    Google Scholar 

  • Beerenwinkel, A., & Börlin, J. (2014). Surface level: teaching time, lesson phases and types of interaction. In H. E. Fischer, P. Labudde, K. Neumann, & J. Viiri (Eds.), Quality of instruction in physics. Comparing Finland, Germany and Switzerland (pp. 65–79). Waxmann: Münster.

    Google Scholar 

  • Bell, R. L., Blair, L. M., Crawford, B. A., & Lederman, N. G. (2003). Just do it?: Impact of a science apprenticeship program on high school students’ understandings of the nature of science and scientific inquiry. Journal of Research in Science Teaching, 40(5), 487–509. https://doi.org/10.1002/tea.10086

    Article  Google Scholar 

  • Berland, L. K., Schwarz, C. V., Krist, C., Kenyon, L., Lo, A. S., & Reiser, B. J. (2016). Epistemologies in practice. Making scientific practices meaningful for students. Journal of Research in Science Teaching, 53(7), 1082–1112. https://doi.org/10.1002/tea.21257

    Article  Google Scholar 

  • Boone, W. J., Townsend, J. S., & Staver, J. (2011). Using Rasch theory to guide the practice of survey development and survey data analysis in science education and to inform science reform efforts: An exemplar utilizing STEBI self-efficacy data. Science Education, 95(2), 258–280. https://doi.org/10.1002/sce.20413.

    Article  Google Scholar 

  • Boone, W. J., Staver, J. R., & Yale, M. S. (2014). Rasch analysis in the human sciences. Dordrecht: Springer Netherlands.

    Book  Google Scholar 

  • Bybee, R. W. (2004). Scientific inquiry and science teaching. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science. Implications for teaching, learning, and teacher education (pp. 1–12). Dordrecht, Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Chen, Z., & Klahr, D. (1999). All other things being equal: acquisition and transfer of the control of variables strategy. Child Development, 70(5), 1098–1120. https://doi.org/10.1111/1467-8624.00081

    Article  Google Scholar 

  • Crawford, B. A. (2014). From inquiry to scientific practices in the science classroom. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education. Volume 2 (pp. 515–541). New York: Routledge.

    Google Scholar 

  • Cuevas, P., Lee, O., Hart, J., & Deaktor, R. (2005). Improving science inquiry with elementary students of diverse backgrounds. Journal of Research in Science Teaching, 42(3), 337–357. https://doi.org/10.1002/tea.20053

    Article  Google Scholar 

  • Dean, D., & Kuhn, D. (2007). Direct instruction vs. discovery: the long view. Science Education, 91(3), 384–397. https://doi.org/10.1002/sce.20194

    Article  Google Scholar 

  • Dugard, P., & Todman, J. (1995). Analysis of pre-test-post-test control group designs in educational research. Educational Psychology, 15(2), 181–198. https://doi.org/10.1080/0144341950150207

    Article  Google Scholar 

  • Duggan, S., Johnson, P., & Gott, R. (1996). A critical point in investigative work: defining variables. Journal of Research in Science Teaching, 33(5), 461–474. https://doi.org/10.1002/(SICI)1098-2736(199605)33:5<461::AID-TEA1>3.0.CO;2-P

    Article  Google Scholar 

  • Field, A. P. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). Los Angeles: Sage.

    Google Scholar 

  • Frey, A., Hartig, J., & Rupp, A. A. (2009). An NCME instructional module on booklet designs in large-scale assessments of student achievement: theory and practice. Educational Measurement: Issues and Practice, 28(3), 39–53. https://doi.org/10.1111/j.1745-3992.2009.00154.x

    Article  Google Scholar 

  • Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: current use, calculations, and interpretation. Journal of Experimental Psychology. General, 141(1), 2–18. https://doi.org/10.1037/a0024338

    Article  Google Scholar 

  • Furtak, E. M., Seidel, T., Iverson, H., & Briggs, D. C. (2012). Experimental and quasi-experimental studies of inquiry-based science teaching: a meta-analysis. Review of Educational Research, 82(3), 300–329. https://doi.org/10.3102/0034654312457206

    Article  Google Scholar 

  • Gott, R., Duggan, S., Roberts, R., & Hussain, A. (2014). Research into understanding scientific evidence. Retrieved from https://community.dur.ac.uk/rosalyn.roberts/Evidence/cofev.htm.

  • Hammann, M., Phan, T. T. H., Ehmer, M., & Grimm, T. (2008). Assessing pupils’ skills in experimentation. Journal of Biological Education, 42(2), 66–72. https://doi.org/10.1080/00219266.2008.9656113

    Article  Google Scholar 

  • Hattie, J. (2009). Visible learning: a synthesis of over 800 meta-analyses relating to achievement. London. New York: Routledge.

    Google Scholar 

  • Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. Methodology in the social sciences. New York: Guilford Publications.

  • Heller, K., & Perleth, C. (2000). Kognitiver Fähigkeitstest für 4. bis 12. Klassen, Revision: KFT 4-12+R [Cognitive abilities test for K4 to K12]. Beltz Test GmbH: Weinheim.

    Google Scholar 

  • Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30(3), 141–158. https://doi.org/10.1119/1.2343497

    Article  Google Scholar 

  • Hofstein, A., Navon, O., Kipnis, M., & Mamlok-Naaman, R. (2005). Developing students’ ability to ask more and better questions resulting from inquiry-type chemistry laboratories. Journal of Research in Science Teaching, 42(7), 791–806. https://doi.org/10.1002/tea.20072

    Article  Google Scholar 

  • Holliday, W. G. (2004). A balanced approach to science inquiry teaching. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science. Implications for teaching, learning, and teacher education (pp. 201–217). Dordrecht, Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Jerusalem, M., & Satow, L. (1999). Schulbezogene Selbstwirksamkeitserwartung [School based self-efficacy]. In R. Schwarzer & M. Jerusalem (Eds.), Skalen zur Erfassung von Lehrer-und Schülermerkmalen [Scales for the assessment of teacher and student characteristics] (pp. 15–16). Berlin: Freie Universität Berlin.

    Google Scholar 

  • Keselman, A. (2003). Supporting inquiry learning by promoting normative understanding of multivariable causality. Journal of Research in Science Teaching, 40(9), 898–921. https://doi.org/10.1002/tea.10115

    Article  Google Scholar 

  • Khishfe, R., & Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders’ views of nature of science. Journal of Research in Science Teaching, 39(7), 551–578. https://doi.org/10.1002/tea.10036

    Article  Google Scholar 

  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: an analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86. https://doi.org/10.1207/s15326985ep4102_1

    Article  Google Scholar 

  • Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction: effect of direct instruction and discovery learning. Psychological Science, 15(10), 661–667. https://doi.org/10.1111/j.0956-7976.2004.00737.x

    Article  Google Scholar 

  • KMK. (2005). Bildungsstandards im Fach Physik für den Mittleren Schulabschluss (Jahrgangsstufe 10) [Standards for physics education grade 5 to 10]. München: Luchterhand.

    Google Scholar 

  • Kremer, K., Specht, C., Urhahne, D., & Mayer, J. (2013). The relationship in biology between the nature of science and scientific inquiry. Journal of Biological Education, 48(1), 1–8. https://doi.org/10.1080/00219266.2013.788541

    Article  Google Scholar 

  • Kuhn, D. (2016). What do young science students need to learn about variables? Science Education, 100(2), 392–403. https://doi.org/10.1002/sce.21207

    Article  Google Scholar 

  • Kuhn, D., Arvidsson, T. S., Lesperance, R., & Corprew, R. (2017). Can engaging in science practices promote deep understanding of them? Science Education, 101(2), 232–250. https://doi.org/10.1002/sce.21263

    Article  Google Scholar 

  • Lawson, A. E. (1978). The development and validation of a classroom test of formal reasoning. Journal of Research in Science Teaching, 15(1), 11–24. https://doi.org/10.1002/tea.3660150103

    Article  Google Scholar 

  • Lazonder, A. W., & Egberink, A. (2014). Children’s acquisition and use of the control-of-variables strategy: effects of explicit and implicit instructional guidance. Instructional Science, 42(2), 291–304. https://doi.org/10.1007/s11251-013-9284-3

    Article  Google Scholar 

  • Lazonder, A. W., & Harmsen, R. (2016). Meta-analysis of inquiry-based learning. effects of guidance. Review of Educational Research, 86(3), 681–718. https://doi.org/10.3102/0034654315627366

    Article  Google Scholar 

  • Lederman, N. G. (2004). Syntax of nature of science within inquiry and science instruction. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science. Implications for teaching, learning, and teacher education (pp. 301–318). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Lederman, N. G. (2007). Nature of science: past, present, and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831–879). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Linacre, J. M. (2014). A user’s guide to Winsteps Ministep Rasch-Model computer programs: program manual 3.81.0. Retrieved from http://www.winsteps.com/winman/

  • Lorch, R. F., Lorch, E. P., Calderhead, W. J., Dunlap, E. E., Hodell, E. C., & Freer, B. D. (2010). Learning the control of variables strategy in higher and lower achieving classrooms: contributions of explicit instruction and experimentation. Journal of Educational Psychology, 102(1), 90–101. https://doi.org/10.1037/a0017972

    Article  Google Scholar 

  • Matlen, B. J., & Klahr, D. (2013). Sequential effects of high and low instructional guidance on children’s acquisition of experimentation skills: is it all in the timing? Instructional Science, 41(3), 621–634. https://doi.org/10.1007/s11251-012-9248-z

    Article  Google Scholar 

  • Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? The case for guided methods of instruction. The American Psychologist, 59(1), 14–19. https://doi.org/10.1037/0003-066X.59.1.14

    Article  Google Scholar 

  • Minstrell, J. (2000). Implications for teaching and learning inquiry: a summary. In J. Minstrell & E. van Zee (Eds.), Inquiring into inquiry learning and teaching in science (pp. 471–496). Washington, D.C: American Association for the Advancement of Science.

    Google Scholar 

  • Nehring, A., Nowak, K. H., Upmeier zu Belzen, A., & Tiemann, R. (2015). Predicting students’ skills in the context of scientific inquiry with cognitive, motivational, and sociodemographic variables. International Journal of Science Education, 37(9), 1343–1363. https://doi.org/10.1080/09500693.2015.1035358

    Article  Google Scholar 

  • Neumann, I., Fulmer, G. W., & Liang, L. L. (2013). Analyzing the FCI based on a force and motion learning progression. Science Education Review Letters, 8–14.

  • Next Generation Science Standards Lead States. (2013). Next generation science standards: For states, by states: Appendix F—Science and engineering practices in the NGSS. Washington DC: National Academies Press.

    Google Scholar 

  • NRC. (2012). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. Washington, D.C: National Academies Press.

    Google Scholar 

  • Osborne, J. (2014a). Scientific practices and inquiry in the science classroom. In N. G. Lederman & S. K. Abell (Hrsg.), Handbook of research on science education (S. 579–599). Volume 2. New York: Routledge/Taylor & Francis Group.

  • Osborne, J. (2014b). Teaching scientific practices: meeting the challenge of change. Journal of Science Teacher Education, 25(2), 177–196. https://doi.org/10.1007/s10972-014-9384-1

    Article  Google Scholar 

  • Ross, J. A. (1988). Controlling variables: a meta-analysis of training studies. Review of Educational Research, 58(4), 405–437. https://doi.org/10.3102/00346543058004405

    Article  Google Scholar 

  • Ruiz-Primo, M. A., & Shavelson, R. J. (1996). Rhetoric and reality in science performance assessments: an update. Journal of Research in Science Teaching, 33(10), 1045–1063. https://doi.org/10.1002/(SICI)1098-2736(199612)33:103.0.CO;2-S

    Article  Google Scholar 

  • Schiefele, U., Krapp, A., Wild, K.-P., & Winteler, A. (1993). Der „Fragebogen zum Studieninteresse“ (FSI) [The “Study Interests Questionnaire”]. Diagnostica, 39(4), 335–351.

  • Schreiber, N., Theyßen, H., & Schecker, H. (2014). Diagnostik experimenteller Kompetenz: Kann man Realexperimente durch Simulationen ersetzen? [Assessment of experimental competency: on the exchangeability of hands-on and simulation-based assessment tools]. Zeitschrift für Didaktik der Naturwissenschaften, 20(1), 161–173. https://doi.org/10.1007/s40573-014-0017-1

    Article  Google Scholar 

  • Schwichow, M., Croker, S., Zimmerman, C., Höffler, T., & Härtig, H. (2016). Teaching the control-of-variables strategy: a meta-analysis. Developmental Review, 39, 37–63. https://doi.org/10.1016/j.dr.2015.12.001

    Article  Google Scholar 

  • Seidel, T., & Prenzel, M. (2006). Stability of teaching patterns in physics instruction: findings from a video study. Learning and Instruction, 16(3), 228–240. https://doi.org/10.1016/j.learninstruc.2006.03.002

    Article  Google Scholar 

  • von Aufschnaiter, C., & Rogge, C. (2010). Misconceptions or missing conceptions? Eurasia Journal of Mathematics, Science & Technology Education, 6(1), 3–18. https://doi.org/10.12973/ejmste/75223

    Article  Google Scholar 

  • Vorholzer, A., von Aufschnaiter, C., & Kirschner, S. (2016). Entwicklung und Erprobung eines Tests zur Erfassung des Verständnisses experimenteller Denk- und Arbeitsweisen [Development of an instrument to assess students’ knowledge of scientific inquiry]. Zeitschrift für Didaktik der Naturwissenschaften, 22(1), 25–41. https://doi.org/10.1007/s40573-015-0039-3.

    Article  Google Scholar 

  • Wagensveld, B., Segers, E., Kleemans, T., & Verhoeven, L. (2015). Child predictors of learning to control variables via instruction or self-discovery. Instructional Science, 43(3), 365–379. https://doi.org/10.1007/s11251-014-9334-5

    Article  Google Scholar 

  • Wellnitz, N., & Mayer, J. (2013). Erkenntnismethoden in der Biologie—Entwicklung und evaluation eines Kompetenzmodells [Scientific methods in biology—development and evaluation of a competence model]. Zeitschrift für Didaktik der Naturwissenschaften, 19, 335–345.

    Google Scholar 

  • Wright, B. D. (2003). Rack and stack: time 1 vs. time 2 or pre-test vs. post-test. Rasch Measurement. Transactions, 17(1), 906 Retrieved from http://www.rasch.org/rmt/rmt171a.htm

    Google Scholar 

  • Zohar, A., & Peled, B. (2008). The effects of explicit teaching of metastrategic knowledge on low- and high-achieving students. Learning and Instruction, 18(4), 337–353. https://doi.org/10.1016/j.learninstruc.2007.07.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Vorholzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorholzer, A., von Aufschnaiter, C. & Boone, W.J. Fostering Upper Secondary Students’ Ability to Engage in Practices of Scientific Investigation: a Comparative Analysis of an Explicit and an Implicit Instructional Approach. Res Sci Educ 50, 333–359 (2020). https://doi.org/10.1007/s11165-018-9691-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-018-9691-1

Keywords

Navigation