Skip to main content

Advertisement

Log in

Primary pre-service teachers’ skills in planning a guided scientific inquiry

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

A study is presented of the skills that primary pre-service teachers (PPTs) have in completing the planning of a scientific inquiry on the basis of a guiding script. The sample comprised 66 PPTs who constituted a group-class of the subject Science Teaching, taught in the second year of an undergraduate degree in primary education at a Spanish university. The data was acquired from the responses of the PPTs (working in teams) to open-ended questions posed to them in the script concerning the various tasks involved in a scientific inquiry (formulation of hypotheses, design of the experiment, data collection, interpretation of results, drawing conclusions). Data were analyzed within the framework of a descriptive–interpretive qualitative research study with a combination of inter- and intra-rater methods, and the use of low-inference descriptors. The results showed that the PPTs have major shortcomings in planning the complete development of a guided scientific inquiry. The discussion of the results includes a number of implications for rethinking the Science Teaching course so that PPTs can attain a basic level of training in inquiry-based science education.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. These activities are also denominated practical work by some authors (e.g., Abrahams and Millar 2008; Caamaño 2012).

  2. Royal Decree 126/2014, February 28, establishing the basic curriculum of primary education. Boletín Oficial del Estado, n° 52, 2014, March 1. Available at http://www.boe.es/boe/dias/2014/03/01/pdfs/BOE-A-2014-2222.pdf.

  3. Steel is fundamentally an alloy of iron with a small admixture of carbon (between 0.03 and 2.14 %). It thus also has high electrical conductivity, although the magnitude depends on the proportions of the mixture.

  4. In this context, there was no intention to insist on the factors on which electrical resistance depends (length, thickness, and resistivity). In any case, if it had been put forward by any of the teams, variation in resistance with the same given type of material would only depend on geometric dimensions, since all the testing would be carried out at room temperature, so that the resistivity would remain constant.

References

  • Abd-El-Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., Niaz, M., Treagust, D., & Tuan, H.-L. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397–419.

    Article  Google Scholar 

  • Abrahams, I. (2009). Does practical work really motivate? A study of the affective value of practical work in secondary school science. International Journal of Science Education, 31(17), 2335–2353.

    Article  Google Scholar 

  • Abrahams, I., & Millar, R. (2008). Does practical work really work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30(14), 1945–1969.

    Article  Google Scholar 

  • Acevedo, J. A., & García-Carmona, A. (2016). “Algo antiguo, algo nuevo, algo prestado”. Tendencias sobre la naturaleza de la ciencia en la educación científica. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 13(1), 3–19.

  • Akerson, V. L., & Hanuscin, D. L. (2007). Teaching nature of science through inquiry: Results of a 3-year professional development program. Journal of Research in Science Teaching, 44(5), 653–680.

    Article  Google Scholar 

  • Arnold, J. C., Kremer, K., & Mayer, J. (2014). Understanding students’ experiments—What kind of support do they need in inquiry tasks? International Journal of Science Education, 36(16), 2719–2749.

    Article  Google Scholar 

  • Banchi, H., & Bell, R. (2008). The many levels of inquiry. Science and Children, 46(2), 26–29.

    Google Scholar 

  • Barolli, E., Laburú, C. E., & Guridi, V. M. (2010). Laboratorio didáctico de ciencias: caminos de investigación. Revista Electrónica de Enseñanza de las Ciencias, 9(1), 88–110.

    Google Scholar 

  • Baseya, J. M., & Francis, C. D. (2011). Design of inquiry-oriented science labs: impacts on students’ attitudes. Research in Science & Technological Education, 29(3), 241–255.

    Article  Google Scholar 

  • Bell, T., Urhahne, D., Schanze, S., & Ploetzner, R. (2010). Collaborative inquiry learning: Models, tools and challenges. International Journal of Science Education, 32(3), 349–377.

    Article  Google Scholar 

  • Bonil, J., & Márquez, C. (2011). Qué experiencias manifiestan los futuros maestros sobre las clases de ciencias? Implicaciones para su formación. Revista de Educación, 354, 447–472.

    Google Scholar 

  • Brown, P. L., Abell, S. K., Demir, A., & Schmidt, F. J. (2006). College science teachers views of classroom inquiry. Science Education, 90(5), 784–802.

    Article  Google Scholar 

  • Bulunuz, M. (2012). Motivational qualities of hands-on science activities for Turkish preservice kindergarten teachers. Eurasia Journal of Mathematics, Science & Technology Education, 8(2), 73–82.

    Google Scholar 

  • Bunterm, T., Lee, K., Lan, J. N., Srikoon, S., Vangpoomyai, P., Rattanavongsa, J., & Rachahoon, G. (2014). Do different levels of inquiry lead to different learning outcomes? A comparison between guided and structured inquiry. International Journal of Science Education, 36(12), 1937–1959.

    Article  Google Scholar 

  • Caamaño, A. (2012). Cómo introducir la indagación en el aula?: los trabajos prácticos investigativos. Alambique, 70, 83–91.

    Google Scholar 

  • Cañal, P., Travé, G., & Pozuelos, F. J. (2011). Análisis de obstáculos y dificultades de profesores y estudiantes en la utilización de enfoques de investigación escolar. Investigación en la Escuela, 73, 5–26.

    Google Scholar 

  • Capps, D. K., & Crawford, B. A. (2013). Inquiry-based professional development: What does it take to support teachers in learning about inquiry and nature of science? International Journal of Science Education, 35(12), 1947–1978.

    Article  Google Scholar 

  • Chapman, S. (2014). Teaching the “big ideas” of electricity at primary level. Primary Science, 135, 5–8.

    Google Scholar 

  • Cañal, P., Criado, A. M., García-Carmona, A., & Muñoz, G. (2013). La enseñanza relativa al medio en las aulas españolas de Educación Infantil y Primaria: Concepciones didácticas y práctica docente. Investigación en la Escuela, 81, 21–42.

  • Cortés, A. L., & Gándara, M. (2006). La construcción de problemas en el laboratorio durante la formación del profesorado: una experiencia didáctica. Enseñanza de las Ciencias, 25(3), 435–450.

    Google Scholar 

  • Cortés, A. L., Gándara, M., Calvo, J. M., Martínez, M. B., Ibarra, M., Arlegui, J., & Gil, M. J. (2012). Expectativas, necesidades y oportunidades de los maestros en formación ante la enseñanza de las ciencias en la educación primaria. Enseñanza de las Ciencias, 30(3), 155–176.

    Google Scholar 

  • Criado, A. M., & García-Carmona, A. (2011). Las experiencias prácticas para el conocimiento del medio (natural y tecnológico) en la formación inicial de maestros. Investigación en la Escuela, 74, 73–88.

  • Crawford, B. A. (2007). Learning to teach science as inquiry in the rough and tumble of practice. Journal of Research in Science Teaching, 44(4), 613–642.

    Article  Google Scholar 

  • Demir, A., & Abell, S. K. (2010). Views of inquiry: Mismatches between views of science education faculty and students of an alternative certification program. Journal of Research in Science Teaching, 47(6), 716–741.

    Article  Google Scholar 

  • Ferrés, C., Marbà, A., & Sanmartí, N. (2015). Trabajos de indagación de los alumnos: instrumentos de evaluación e identificación de dificultades. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 12(1), 22–37.

    Google Scholar 

  • Fondère, F., & Séré, M. G. (1997). Una sesión innovadora de trabajo de laboratorio para enseñar proceso de datos. Segundo curso de estudios de física a nivel universitario. Enseñanza de las Ciencias, 15(3), 423–429.

    Google Scholar 

  • García-Carmona, A. (2010). Comprensión del comportamiento eléctrico de los sólidos a partir de un conocimiento básico sobre la materia. Un estudio exploratorio con alumnos de secundaria. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 7(2), 509–526.

  • García-Carmona, A. (2012). Cómo enseñar naturaleza de la ciencia (NDC) a través de experiencias escolares de investigación científica. Alambique, 72, 55–63.

  • García-Carmona, A., & Cruz-Guzmán, M. (2016). Con qué vivencias, potencialidades y predisposiciones inician los futuros docentes de Educación Primaria su formación en la enseñanza de la ciencia? Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 13(2), 440–458.

  • García-Carmona, A., Cruz-Guzmán, M., & Criado, A. M. (2014). “Qué hacías para aprobar los exámenes de ciencias, qué aprendiste y qué cambiarías?”. Preguntamos a futuros docentes de Educación Primaria. Investigación en la Escuela, 84, 31–46.

  • Garritz, A. (2012). Proyectos educativos recientes basados en la indagación de la química. Educacion Quimica, 23(4), 458–464.

    Google Scholar 

  • Gillies, R. M., & Nichols, K. (2015). How to support primary teachers’ implementation of inquiry: teachers’ reflections on teaching cooperative inquiry-based science. Research in Science Education, 45(2), 171–191.

    Article  Google Scholar 

  • Girault, I., d’Ham, C., Ney, M., Sanchez, E., & Wajeman, C. (2012). Characterizing the experimental procedure in science laboratories: A preliminary step towards students’ experimental design. International Journal of Science Education, 34(6), 825–854.

    Article  Google Scholar 

  • Guisasola, J., Ceberio, M., & Zubimendi, J. L. (2006). University students’ strategies for constructing hypothesis when tackling paper-and-pencil tasks in physics. Research in Science Education, 36(3), 163–186.

    Article  Google Scholar 

  • Hanuscin, D., & Park-Rogers, M. (2008). Learning to observe and infer. Science and Children, 45(6), 56–57.

    Google Scholar 

  • Harlen, W. (2013). Assessment & Inquiry-Based Science Education: Issues in Policy and Practice. Trieste: IAP.

    Google Scholar 

  • Harlen, W. (2014). Helping children’s development of inquiry skills. Inquiry in Primary Science Education, 1, 5–19.

    Google Scholar 

  • Hodson, D. (2005). Teaching and learning chemistry in the laboratory: A critical look at the research. Educacion Quimica, 16(1), 30–38.

    Google Scholar 

  • Hodson, D. (2014). Learning science, learning about science, doing science: different goals demand different learning methods. International Journal of Science Education, 36(15), 2534–2553.

    Article  Google Scholar 

  • Hofstein, A., & Mamlok-Naaman, R. (2007). The laboratory in science education: the state of the art. Chemistry Education Research and Practice, 8(2), 105–107.

    Article  Google Scholar 

  • Hofstein, A., Navon, O., Kipnis, M., & Mamlok‐Naaman, R. (2005). Developing students’ ability to ask more and better questions resulting from inquiry-type chemistry laboratories. Journal of Research in Science Teaching, 42(7), 791–806.

    Article  Google Scholar 

  • Hsu, Y. S., Lai, T. L., & Hsu, W. H. (2015). A design model of distributed scaffolding for inquiry-based learning. Research in Science Education, 45(2), 241–273.

    Article  Google Scholar 

  • Inter-Academy Partnership [IAP], (2010). Taking Inquiry-Based Science Education into Secondary Education. A global conference. York, UK: IAP Science Education Program.

    Google Scholar 

  • Karelina, A., & Etkina, E. (2007). Acting like a physicist: Student approach study to experimental design. Physical Review, Special Topics. Physics Education Research, 3(2), 020106.

    Google Scholar 

  • Kawalkar, A., & Vijapurkar, J. (2013). Scaffolding science talk: The role of teachers’ questions in the inquiry classroom. International Journal of Science Education, 35(12), 2004–2027.

    Article  Google Scholar 

  • Keys, C. W., Hand, B., Prain, V., & Collins, S. (1999). Using the science writing heuristic as a tool for learning from laboratory investigations in secondary science. Journal of Research in Science Teaching, 36(10), 1065–1084.

    Article  Google Scholar 

  • Kim, M., & Tan, A.-L. (2011). Rethinking difficulties of teaching inquiry-based practical work: stories from elementary pre-service teachers. International Journal of Science Education, 33(4), 465–486.

    Article  Google Scholar 

  • Kipnis, M., & Hofstein, A. (2008). The inquiry laboratory as a source for development of metacognitive skills. International Journal of Science and Mathematics Education, 6(3), 601–627.

    Article  Google Scholar 

  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.

    Article  Google Scholar 

  • Lead States, N. G. S. S. (2013). The Next Generation Science Standards: For States, by States. Washington: National Academy of Sciences.

    Google Scholar 

  • Lederman, J. S., Lederman, N. G., Bartos, S. A., Bartels, S. L., Meyer, A. A., & Schwartz, R. S. (2014). Meaningful assessment of learners’ understandings about scientific inquiry—The views about scientific inquiry (VASI) questionnaire. Journal of Research in Science Teaching, 51(1), 65–83.

    Article  Google Scholar 

  • Lubben, F., & Millar, R. (1996). Children’s ideas about the reliability of experimental data. International Journal of Science Education, 18(8), 955–968.

    Article  Google Scholar 

  • Lucero, M., Valcke, M., & Schellens, T. (2013). Teachers’ beliefs and self-reported use of inquiry in science education in public primary schools. International Journal of Science Education, 35(8), 1407–1423.

    Article  Google Scholar 

  • McLaughlin, C. A., & MacFadden, B. J. (2014). At the elbows of scientists: shaping science teachers’ conceptions and enactment of inquiry-based instruction. Research in Science Education, 44(6), 927–947.

    Article  Google Scholar 

  • Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry‐based science instruction—what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474–496.

    Article  Google Scholar 

  • Moe, J. M. (2011). Conceptual understanding of science through archaeological inquiry (Doctoral dissertation). Bozeman, Montana: Montana State University.

    Google Scholar 

  • Newman, W. J., Abell, S. K., Hubbard, P. D., McDonald, J., Otaala, J., & Martini, M. (2004). Dilemmas of teaching inquiry in elementary science methods. Journal of Science Teacher Education, 15(4), 257–279.

    Article  Google Scholar 

  • Oh, P. S. (2010). How can teachers help students formulate scientific hypotheses? Some strategies found in abductive inquiry activities of earth science. International Journal of Science Education, 32(4), 541–560.

    Article  Google Scholar 

  • Padilla, M. T. (2002). Técnicas e instrumentos para el diagnóstico y la evaluación educativa. Madrid: CCS.

    Google Scholar 

  • Peker, D., & Wallace, C. S. (2011). Characterizing high school students’ written explanations in biology laboratories. Research in Science Education, 41(2), 169–191.

    Article  Google Scholar 

  • Pro, A. (2011). Aprender y enseñar con experiencias… y ahora para desarrollar competencias. Investigación en la Escuela, 74, 5–21.

    Google Scholar 

  • Roca, M., Márquez, C., & Sanmartí, N. (2013). Las preguntas de los alumnos: una propuesta de análisis. Enseñanza de las Ciencias, 31(1), 95–114.

    Google Scholar 

  • Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg, H., & Hemmo, V. (2007). Science education now: A renewed pedagogy for the future of Europe. Brussels: Directorate General for Research, Science, Economy and Society.

    Google Scholar 

  • Salmerón, L. (2013). Actividades que promueven la transferencia de los aprendizajes: una revisión de la literatura. Revista de Educación, No. Extraordinario, 34-53.

  • Science Community Representing Education [SCORE]. (2013). Resourcing practical science in primary schools. London: SCORE.

    Google Scholar 

  • Seale, C. (1999). The quality of qualitative research. London: Sage.

    Book  Google Scholar 

  • Sebastiany, A. P., Pizzato, M. C., Diehl, I. F., & Salgado, T. D. M. (2013). Aprendiendo a investigar por medio de la ciencia forense. Revista Eureka sobre enseñanza y divulgación de las ciencias, 10(3), 480–490.

    Google Scholar 

  • Varma, T., Volkmann, M., & Hanuscin, D. (2009). Preservice elementary teachers’ perceptions of their understanding of inquiry and inquiry-based science pedagogy: Influence of an elementary science education methods course and a science field experience. Journal of Elementary Science Education, 21(4), 1–22.

    Article  Google Scholar 

  • Vílchez, J. M., & Bravo, B. (2015). Percepción del profesorado de ciencias de educación primaria en formación acerca de las etapas y acciones necesarias para realizar una indagación escolar. Enseñanza de las Ciencias, 33(1), 185–202.

    Google Scholar 

  • von Aufschnaiter, C., & Rogge, C. (2010). Misconceptions or missing conceptions? Eurasia Journal of Mathematics. Science & Technology Education, 6(1), 3–18.

    Google Scholar 

  • Wilkox, J., Kruse, J. W., & Clough, M. (2015). Teaching science through inquiry. The Science Teacher, 82(6), 62–67.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Economy and Competitiveness (Spain) under the grant EDU2013-41003-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio García-Carmona.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Carmona, A., Criado, A.M. & Cruz-Guzmán, M. Primary pre-service teachers’ skills in planning a guided scientific inquiry. Res Sci Educ 47, 989–1010 (2017). https://doi.org/10.1007/s11165-016-9536-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-016-9536-8

Keywords

Navigation