Skip to main content
Log in

Modeling Pupils' Understanding and Explanations Concerning Changes in Matter

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

The explanations of thirty primary pupils for changes in matter were recorded through individual, semi-structured interviews. The analysis of data pointed to the construction of a system for classifying pupils' explanations of changes in matter. A parallel analysis of data focused on the identification and interpretation of associations between the explanatory categories resulting from the classification, and certain variables of the context, that is (a) category of change to be explained, and (b) familiarity with the system about which they were being questioned. The results of the two phases of the analysis were combined with the findings of a previous study, to produce the formation of a limited number of pupils' models concerning matter, changes in matter and their explanations. Pupils' models involve a variety of conceptions which could be attributed to the presence of a conceptual obstacle: that is the “continuous and static conception of matter.” The definition of teaching objectives in relation to obstacles (“obstacles as objectives”) can bring together pupils' conceptions with concepts to be built and consequently to contribute to the design and evaluation of constructivist teaching and appropriate material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, B. (1986a). The experiential gestalt of causation: A common core to pupils' preconceptions in science. European Journal of Science Education, 8(2), 155–171.

    Google Scholar 

  • Andersson, B. (1986b, January). Pupils' reasoning in science. Invited paper, ICASE symposium, annual meeting of Association for Science Education, University of York, York, UK.

  • Andersson, B. (1990). Pupils' conception of matter and its transformations (age 12–16). Studies in Science Education, 18, 53–85.

    Google Scholar 

  • Andersson, B., & Renström, L. (1983a). How Swedish pupils, age 12–15, explain the ‘copper-pipe’ problem (Working paper). Göteborg, Sweden: University of Göteborg.

  • Andersson, B., & Renström, L. (1983b). How Swedish pupils, age 12–15, explain the ‘exhaust’ problem (Working paper). Göteborg, Sweden: University of Göteborg.

  • Berzonsky, M. (1971). The role of familiarity in children's explanations of physical causality. Child Development, 42, 705–706.

    Google Scholar 

  • Blalock, H. M. (1987). Social statistics. Singapore: McGraw-Hill.

    Google Scholar 

  • Brosnan, T. (1990). Categorising macro and micro explanations of natural change. In P. L. Lijnse, P. Light, W. de Vos, & A. J. Waarlo (Eds.), Proceedings of the seminar relating macroscopic phenomena to microscopic particles. A central problem in secondary science education (pp. 198–211). Utrecht, The Netherlands: CD-β Press.

    Google Scholar 

  • Christidou, V., & Koulaidis, V. (1996). Children's models of the ozone layer and ozone depletion. Research in Science Education, 26(4), 421–436.

    Google Scholar 

  • Christidou, V., Koulaidis, V., & Christidis, T. (1997). Children's use of metaphors in relation to their models: the case of the ozone layer and its depletion. Research in Science Education, 16(4), 541–552.

    Google Scholar 

  • De Vos, W. (1990). Seven thoughts on teaching molecules. In P. L. Lijnse, P. Light, W. de Vos, & A. J. Waarlo (Eds.), Proceedings of the seminar relating macroscopic phenomena to microscopic particles. A central problem in secondary science education (pp. 163–716). Utrecht, The Netherlands: CD-β Press.

    Google Scholar 

  • Driver, R., Guesne, E., & Tiberghien, A. (1985). Children's ideas in science. Milton Keynes, UK: Open University Press.

    Google Scholar 

  • Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science. Research into children's ideas. London and New York: Routledge.

    Google Scholar 

  • Erickson, B., & Nosanchuk, T. (1985). Understanding data. Milton Keynes, UK: Open University Press.

    Google Scholar 

  • Halbwachs, F. (1971). Causalité linéaire et causalité circulaire en physique (Linear causality and circular causality in Physic). In M. Bunge, F. Halbwachs, T. Kuhn, J. Piaget, & L. Rosenfeld (Eds.), Les théories de la causalité (Theories of causality) (pp. 44–47). Paris, France: Presses Universitaires de France.

    Google Scholar 

  • Hatzinikita, V., & Koulaidis, V. (1995). Pupils' models of explanation on changes of matter. In R. M. Janiuk (Ed.), Research in chemical education and its influence on teaching chemical education. Proceedings of 3rd European conference on research in chemical education (pp. 72–79). Lublin, Poland.

  • Hatzinikita, V., & Koulaidis, V. (1998). Représentations des élèves de l'école primaire sur les changements des systèmes physico-chimiques: Système de classification (Representations of elementary school pupils on changes in physical–chemical systems: Classification system). Didaskalia, 12, 91–112.

    Google Scholar 

  • Johnson, P. (1998a). Progression in children's understanding of a ‘basic’ particle theory: A longitudinal study. International Journal of Science Education, 20(4), 393–412.

    Google Scholar 

  • Johnson, P. (1998b). Children's understanding of changes of state involving the gas state: evaporation and condensation below the boiling point. International Journal of Science Education, 20(6), 695–709.

    Google Scholar 

  • Johsua, S., & Dupin, J. J. (1993). Introduction à la didactique des sciences et des mathématiques (Introduction in science and mathematics education). Paris, France: Presses Universitaires de France.

    Google Scholar 

  • Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago: The University of Chicago Press.

    Google Scholar 

  • Martinand, J. L. (1986). Connaître et transformer la matière (Knowing and transforming the matter). Berne, Switzerland: Peter Lang.

    Google Scholar 

  • Méheut, M. (1989). Des représentations des élèves au concept de réaction chimique: Premières étapes (Pupils' representations on the concept of chemical reaction: First steps). Bulletin de l'Union des Physiciens, 716, 997–1011.

    Google Scholar 

  • Méheut, M., & Chomat, A. (1990). Les limites de l'atomisme enfantin: Expérimentation d'une démarche d'élaboration d'un modèle particulaire par les élèves de collège (The limits of children's atomism: an attempt to help children build up a particulate model of matter). European Journal of Psychology of Education, 5(4), 417–437.

    Google Scholar 

  • Méheut, M., Saltiel, E., & Tiberghien, A. (1985). Pupils' (11–12 years olds) conceptions of combustion. European Journal of Science Education, 7(1), 83–93.

    Google Scholar 

  • Nussbaum, J. (1985). The particulate nature of matter in the gaseous phase. In R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children's ideas in science (pp. 124–144). Milton Keynes, UK: Open University Press.

    Google Scholar 

  • Peterfalvi, B. (2001). Obstacles et situations didactiques en sciences: processus intellectuels et constatations. L'exemple des transformations de la matière (Obstacles and didactical situations: Intellectual process and constatations. The example of transformations of matter). Unpublished doctoral thesis, University of Rouen, Department of Psychology, Sociology and Education, Rouen, France.

  • Peterfalvi, B., & Verin, A. (1996). Tackling conceptual obstacles to acquiring scientific knowledge in a constructivist-teaching model. In A. Giordan & Y. Girault (Eds.), The new learning models, their consequences for the teaching of biology, health and environment (pp. 125–134). Nice, France: Z-Editions.

    Google Scholar 

  • Pfundt, H. (1981). The atom – the final link in the division process or the first building block? Chimica Didactica, 7, 75–94.

    Google Scholar 

  • Piaget, J. (1927). La causalité physique chez l'enfant (Physical causality in childhood). Paris, France: Librairie F. Alcan.

    Google Scholar 

  • Piaget, J., & Inhelder, B. (1978). Le développement des quantités physiques chez l'enfant (4th ed.) (The child's construction of quantities). Paris, France: Delachaux et Niestlé.

    Google Scholar 

  • Prieto, T., Blanco, A., & Rodriguez, A. (1989). The ideas of 11 to 14-year-old pupils about the nature of solutions. International Journal of Science Education, 11(4), 451–463.

    Google Scholar 

  • Rahayu, S., & Tytler, R. (1999). Progression in primary school children's conceptions of burning: Toward an understanding of the concept of substance. Research in Science Education, 29(3), 295–312.

    Google Scholar 

  • Schollum, B. (1981). Chemical change (Working paper 27). Hamilton, New Zealand: University of Waikato.

  • Schollum, B., Osborne, R., & Lambert, J. (1981). Heating and cooling (Working paper 38). Hamilton, New Zealand: University of Waikato.

  • Séré, M. G. (1986). Children's conceptions of the gaseous state prior to teaching. European Journal of Science Education, 8(4), 413–425.

    Google Scholar 

  • Solomonidou, C., & Stavridou, H. (2000). From inert object to chemical substance: young pupils' initial conceptions and conceptual development during an introductory experimental chemistry sequence. Science Education, 84, 382–400.

    Article  Google Scholar 

  • Tiberghien, A., & Weil-Barais, A. (1987). Les modèles spontanés dans la pensée commune et enfantine (Spontaneous models in common sense and childrens' thinking). In A. Giordan & J. L. Martinand (Eds.), Actes des IXèmes journales internationales sur la communication, l'éducation et la culture scientifiques et industrielles: Modèles et simulation (Proceedings of the 9th international days on communication, education and scientific and industrial culture: models and simulation) (pp. 47–55). Paris, France: UF de Didactique, Université Paris XII.

    Google Scholar 

  • Viennot, L. (1993). La causalité dans le raisonnement des étudiants (Causality in students' reasoning). Didaskalia, 1, 13–27.

    Google Scholar 

  • Weil-Barais, A., & Vergnaud, G. (1990). Pupils' conceptions in physics and mathematics: Biases and helps. In J. P. Caverni, J. M. Fabre, & M. Gonzalez (Eds.), Cognitive biases (pp. 69–84). North-Holland, Holland: Elsevier Science Publishers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilios Koulaidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatzinikita, V., Koulaidis, V. & Hatzinikitas, A. Modeling Pupils' Understanding and Explanations Concerning Changes in Matter. Res Sci Educ 35, 471–495 (2005). https://doi.org/10.1007/s11165-004-8321-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-004-8321-2

Keywords

Navigation