Skip to main content
Log in

Synthesis of highly effective CuO–FeSe2 composites for the photodegradation of RhB under visible light

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The release of industrial effluents into fresh water is a major contributor of water contamination. Therefore, it is highly desirable to develop a viable solution to this alarming issue to improve the quality of clean water. To enhance the photocatalytic efficiency and hence utilization ratio of CuO, a series of CuO–FeSe2 composites with different varying contents of FeSe2 were prepared through facile synthetic methods. X-ray diffraction (XRD) and energy-dispersive X-rays (EDX) analysis verified that the samples were successfully prepared without any contaminating phases. The average crystallite sizes of CuO and FeSe2 were computed to be 29 and 21 nm respectively. For the CuO–FeSe2 composites, the crystallite sizes varied between 25 and 27 nm. The morphology of CuO was comprised of needle-shaped structures, whereas that of FeSe2 was observed to be flower-shaped structures comprising of irregular crystals. A red shift in the bandgap of CuO–FeSe2 composites was observed with the increase in FeSe2 concentration. The prepared photocatalysts were utilized to evaluate their efficiency under visible light against Rhodamine B (RhB). Among all the prepared composites, CuO–75% FeSe2 revealed a remarkable performance and degraded 96% RhB in 180 min. Rate constants for the degradation of the dye were determined by applying the Langmuir–Hinshelwood model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data and code availability

Data will be made available on reasonable request.

References

  1. S.N. Ahmed, W. Haider, Nanotechnology 29(34), 342001 (2018)

    Article  PubMed  Google Scholar 

  2. K. Mahdavi, S. Zinatloo-Ajabshir, Q.A. Yousif, M. Salavati-Niasari, Ultrason. Sonochem. 82, 105892 (2022)

    Article  CAS  PubMed  Google Scholar 

  3. M. Salavati-Niasari, Microporous Mesoporous Mater. 95(1), 248 (2006)

    Article  CAS  Google Scholar 

  4. M. Panahi-Kalamuei, M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, J. Alloys Compd. 617, 627 (2014)

    Article  CAS  Google Scholar 

  5. R. Bianchini, L. Calucci, C. Lubello, C. Pinzino, Res. Chem. Intermed. 28(2–3), 247 (2002)

    Article  CAS  Google Scholar 

  6. Z.M. Saigl, Indones. J. Chem. 21(4), 1039 (2021)

    Article  CAS  Google Scholar 

  7. M. Shaterian, M. Enhessari, D. Rabbani, M. Asghari, M. Salavati-Niasari, Appl. Surf. Sci. 318, 213 (2014)

    Article  CAS  Google Scholar 

  8. R. Sabarish, G. Unnikrishnan, J. Mol. Liq. 272, 919 (2018)

    Article  CAS  Google Scholar 

  9. E. Ghasemi, M. Kaykhaii, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 164, 93 (2016)

    Article  CAS  Google Scholar 

  10. V. Kumar, Arab. J. Chem. 12(3), 316 (2019)

    Article  Google Scholar 

  11. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Compos. B Eng. 174, 106930 (2019)

    Article  CAS  Google Scholar 

  12. S. Zinatloo-Ajabshir, S. Rakhshani, Z. Mehrabadi, M. Farsadrooh, M. Feizi-Dehnayebi, S. Rakhshani, M. Dušek, V. Eigner, S. Rtimi, T.M. Aminabhavi, J. Environ. Manag. 350, 119545 (2024)

    Article  CAS  Google Scholar 

  13. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Compos. B Eng. 167, 643 (2019)

    Article  CAS  Google Scholar 

  14. F. Razi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Mater. Lett. 193, 9 (2017)

    Article  CAS  Google Scholar 

  15. S. Moshtaghi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci. Mater. Electron. 27, 834 (2016)

    Article  CAS  Google Scholar 

  16. S. Zinatloo-Ajabshir, M. Mousavi-Kamazani, Ceram. Int. 47(17), 23702 (2021)

    Article  CAS  Google Scholar 

  17. G. Crini, E. Lichtfouse, Environ. Chem. Lett. 17, 145 (2019)

    Article  CAS  Google Scholar 

  18. H. Liu, C. Wang, G. Wang, Chem. Asian J. 15(20), 3239 (2020)

    Article  CAS  PubMed  Google Scholar 

  19. H. Teymourinia, M. Salavati-Niasari, O. Amiri, H. Safardoust-Hojaghan, J. Mol. Liq. 242, 447 (2017)

    Article  CAS  Google Scholar 

  20. W. Li, X. Chu, F. Wang, Y. Dang, X. Liu, X. Wang, C. Wang, Appl. Catal. B Environ. 288, 120034 (2021)

    Article  CAS  Google Scholar 

  21. S. Zinatloo-Ajabshir, Z. Salehi, O. Amiri, M. Salavati-Niasari, J. Alloys Compd. 791, 792 (2019)

    Article  CAS  Google Scholar 

  22. K. Kalpana, V. Selvaraj, Res. Chem. Intermed. 43, 423 (2017)

    Article  CAS  Google Scholar 

  23. K. Wenderich, G. Mul, Chem. Rev. 116(23), 14587 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. H. Khojasteh, M. Salavati-Niasari, H. Safajou, H. Safardoust-Hojaghan, DRM 79, 133 (2017)

    CAS  Google Scholar 

  25. Y. Yang, H. Zhong, C. Tian, Res. Chem. Intermed. 37, 91 (2011)

    Article  Google Scholar 

  26. G. Ren, H. Han, Y. Wang, S. Liu, J. Zhao, X. Meng, Z. Li, Nanomaterials 11(7), 1804 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M. Jamdar, R. Monsef, S.H. Ganduh, E.A. Dawi, L.S. Jasim, M. Salavati-Niasari, Ecotoxicol. Environ. Saf. 269, 115801 (2024)

    Article  CAS  PubMed  Google Scholar 

  28. O. Yayapao, T. Thongtem, A. Phuruangrat, S. Thongtem, Mater. Sci. Semicond. Process. 39, 786 (2015)

    Article  CAS  Google Scholar 

  29. Z. Ali, A.U. Shah, Z. Ali, A. Mahmood, Mater. Chem. Phys. 249, 123169 (2020)

    Article  CAS  Google Scholar 

  30. S. Das, V.C. Srivastava, Nanotechnol. Rev. 7(3), 267 (2018)

    Article  CAS  Google Scholar 

  31. M. Salavati-Niasari, M. Dadkhah, F. Davar, Polyhedron 28(14), 3005 (2009)

    Article  CAS  Google Scholar 

  32. C. Chen, J. Zhang, X. Xiong, J. Lin, S. Yang, J. Xi, Z. Kong, Int. J. Hydrogen Energy 47(67), 28879 (2022)

    Article  CAS  Google Scholar 

  33. A. Khan, A.U. Khan, K. Tahir, J. Liu, M.E. Zaki, Z.M. Almarhoon, A.A. Alanazi, T.M. Althagafi, S.I. Al-Saeedi, H. Mohamedbakr, Mater. Chem. Phys. 303, 127793 (2023)

    Article  CAS  Google Scholar 

  34. P. Raizada, A. Sudhaik, S. Patial, V. Hasija, A.A.P. Khan, P. Singh, S. Gautam, M. Kaur, V.-H. Nguyen, Arab. J. Chem. 13(11), 8424 (2020)

    Article  CAS  Google Scholar 

  35. L. Xu, G. Zheng, S. Pei, J. Wang, Optik 158, 382 (2018)

    Article  CAS  Google Scholar 

  36. P. Raizada, A. Sudhaik, S. Patial, V. Hasija, A.A. Parwaz Khan, P. Singh, S. Gautam, M. Kaur, V.-H. Nguyen, Arab. J. Chem. 13(11), 8424 (2020)

    Article  CAS  Google Scholar 

  37. B. Li, Y. Wang, Superlattices Microstruct. 47(5), 615 (2010)

    Article  CAS  Google Scholar 

  38. T. Tangcharoen, W. Klysubun, C. Kongmark, J. Mater. Sci. Mater. Electron. 31, 12807 (2020)

    Article  CAS  Google Scholar 

  39. K. Kannan, D. Radhika, M.P. Nikolova, V. Andal, K.K. Sadasivuni, L.S. Krishna, Optik 218, 165112 (2020)

    Article  CAS  Google Scholar 

  40. M.S. AlSalhi, S. Devanesan, N.N. Asemi, M. Aldawsari, Environ. Res. 222, 115370 (2023)

    Article  CAS  PubMed  Google Scholar 

  41. X. Meng, M. Hao, J. Shi, Z. Cao, W. He, Y. Gao, J. Liu, Z. Li, Adv. Powder Technol. 28(12), 3247 (2017)

    Article  CAS  Google Scholar 

  42. Z. Behzadifard, Z. Shariatinia, M. Jourshabani, J. Mol. Liq. 262, 533 (2018)

    Article  CAS  Google Scholar 

  43. G. Zhuang, J. Yan, Y. Wen, Z. Zhuang, Y. Yu, Sol. RRL 5(6), 2000403 (2021)

    Article  CAS  Google Scholar 

  44. X. Xiong, J. Zhang, Y. Cheng, C. Chen, J. Zeng, J. Xi, Z. Kong, Y.-J. Yuan, Z. Ji, Int. J. Hydrogen Energy 47(11), 7189 (2022)

    Article  CAS  Google Scholar 

  45. H. Mohan, G.H. Ha, H.S. Oh, G. Kim, T. Shin, Chemosphere 307, 135937 (2022)

    Article  CAS  PubMed  Google Scholar 

  46. D. Manyasree, K.M. Peddi, R. Ravikumar, Int. J. Appl. Pharm. 9(6), 71 (2017)

    Article  CAS  Google Scholar 

  47. Z. Yang, J.-Y. Zhang, Z. Liu, Z. Li, L. Lv, X. Ao, Y. Tian, Y. Zhang, J. Jiang, C. Wang, ACS Appl. Mater. Interfaces 9(46), 40351 (2017)

    Article  CAS  PubMed  Google Scholar 

  48. F. Ahmad, R. Hussain, A. Shah, S. ur Rahman, Phys. B Condens. Matter 664, 415023 (2023)

    Article  CAS  Google Scholar 

  49. A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13(1), 251 (2011)

    Article  Google Scholar 

  50. D. Zhang, Pol. J. Chem. Technol. 14(2), 42 (2012)

    Article  CAS  Google Scholar 

  51. K.V. Kumar, K. Porkodi, A. Selvaganapathi, Dyes Pigm. 75(1), 246 (2007)

    Article  CAS  Google Scholar 

  52. J. Jia, W. Sun, Q. Zhang, X. Zhang, X. Hu, E. Liu, J. Appl. Catal. B Environ. 261, 118249 (2020)

    Article  CAS  Google Scholar 

  53. T. Fan, C. Chen, Z. Tang, Y. Ni, C. Lu, Mater. Sci. Semicond. Process. 40, 439 (2015)

    Article  CAS  Google Scholar 

  54. F. Haque, T. Daeneke, K. Kalantar-Zadeh, J.Z. Ou, Nano-Micro Lett. 10(2), 1 (2018)

    Article  Google Scholar 

  55. L. Yang, B. Liu, T. Liu, X. Ma, H. Li, S. Yin, T. Sato, Y. Wang, Sci. Rep. 7(1), 45715 (2017)

    Article  PubMed Central  Google Scholar 

  56. S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci. Mater. Electron. 26, 5658 (2015)

    Article  CAS  Google Scholar 

  57. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Z. Zinatloo-Ajabshir, Sep. Purif. Technol. 177, 110 (2017)

    Article  CAS  Google Scholar 

  58. S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Ceram. Int. 41(8), 9593 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Higher Education Commission of Pakistan for providing funding (NRPU Project 5349/Federal/NRPU/R&D/HEC/2016). The authors also acknowledge the generous support from the Researchers Supporting Project Number (RSP 2024R122), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

FA contributed to the investigation, formal analysis, and writing—original draft. RH was involved in conceptualization, methodology, project administration, writing—review and editing. AS and IP contributed to the data curation and investigation. MFA and AH participated in resources and writing—review and editing. MA and SUK contributed to investigation, validation, formal analysis. SUR was involved in supervision, project administration, funding acquisition, writing—review and editing.

Corresponding authors

Correspondence to Rafaqat Hussain or Shams ur Rahman.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, F., Hussain, R., Khan, S.U. et al. Synthesis of highly effective CuO–FeSe2 composites for the photodegradation of RhB under visible light. Res Chem Intermed 50, 2501–2518 (2024). https://doi.org/10.1007/s11164-024-05286-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-024-05286-6

Keywords

Navigation