Skip to main content
Log in

Nanocrystalline barium stannate: facile morphology-controlled preparation, characterization and investigation of optical and photocatalytic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure cubic nanocrystalline barium stannate was synthesized by new simple coprecipitation strategies that employed tin (II) chloride and [bis(salicylaldehydato) barium (II)] as tin and barium sources in presence of tetramethylethylenediamine (TMED) as a novel precipitating agent. This work is the first successful attempt for the preparation of nanostructured barium stannate by utilizing TMED via a facile coprecipitation way in presence of tin (II) chloride and [bis(salicylaldehydato) barium (II)]. The structural, optical and morphological characteristics of the as-prepared nanostructured barium stannate were studied by UV–vis diffuse reflectance spectroscopy, transmission electron microscopy, X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy and energy dispersive X-ray microanalysis (EDX). According to the SEM results, it was found that shape and size of the barium stannate can be dramatically controlled by setting critical preparation factors such as the barium source, precipitating agent type, reaction pH, surfactant type and dosage of surfactant. The photocatalytic characteristics of as-obtained nanocrystalline barium stannate were also examined by degradation of erythrosine dye as water contaminant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Zhigang, Z. Gang, Ferroelectrics 101, 43 (1990)

    Article  Google Scholar 

  2. W. Zhang, J. Tang, J. Ye, J. Mater. Res. 22, 1859 (2007)

    Article  Google Scholar 

  3. H. Mizoguchi, H.W. Eng, P.M. Woodward, Inorg. Chem. 43, 1667 (2004)

    Article  Google Scholar 

  4. V.G. Wagner, H. Binder, Z. Anorg, Allg. Chem. 298, 12 (1959)

    Article  Google Scholar 

  5. P.H. Borse, J.S. Lee, H.G. Kim, J. Appl. Phys. 100, 124915 (2006)

    Article  Google Scholar 

  6. W. Wang, Sh Liang, K. Ding, J. Bi, J.C. Yu, P. Keung Wong, L. Wu, J. Mater. Sci. 49, 1893 (2014)

    Article  Google Scholar 

  7. S.S. Shin, J.S. Kim, J.H. Suk, K.D. Lee, D.W. Kim, J.H. Park, I.S. Cho, K.S. Hong, J.Y. Kim, ACS Nano 7, 1027 (2013)

    Article  Google Scholar 

  8. J. Cerda, J. Arbiol, G. Dezanneau, R. Díaz, J.R. Morante, Sensors Actuators B 84, 21 (2002)

    Article  Google Scholar 

  9. T. Huang, T. Nakamura, M. Itoh, Y. Inaguma, O. Ishiyama, J. Mater. Sci. 30, 1556 (1995)

    Article  Google Scholar 

  10. V. Vorgelegt, L. Wensheng, Synthesis of Nanosized BaSnO 3 Powders. Doctoral thesis in Engineering of Natural Sciences, (Faculty of Engineering, University of Saarlandes, Saarbrücken—Germany, 2002), pp. 1–2

  11. S. Upadhyay, O. Parkash, D. Kumar, Mater. Lett. 49, 251 (2001)

    Article  Google Scholar 

  12. A.S. Deep, S. Vidya, P.C. Manu, S. Solomon, A. John, J.K. Thomas, J. Alloys Compd. 509, 1830 (2011)

    Article  Google Scholar 

  13. W. Lu, H. Schmidt, J. Sol-Gel. Sci. Technol. 42, 55 (2007)

    Article  Google Scholar 

  14. J. Ahmed, C.K. Blakely, S.R. Bruno, V.V. Poltavets, Mater. Res. Bull. 47, 2282 (2012)

    Article  Google Scholar 

  15. Y.H.O. Muñoz, M. Ponce, J. E. R. Páez Powder Technol. 279, 86 (2015)

    Article  Google Scholar 

  16. S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Ceram. Int. 41, 9593 (2015)

    Article  Google Scholar 

  17. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Int. J. Appl. Ceram. Technol. 11, 654 (2014)

    Article  Google Scholar 

  18. F. Beshkar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 26, 5043 (2015)

    Google Scholar 

  19. S. Zinatloo-Ajabshir, M. Salavati-Niasari, N. J. Chem. 39, 3948 (2015)

    Article  Google Scholar 

  20. M. Sabet, M. Salavati-Niasari, O. Amiri, Electrochim. Acta 117, 504 (2014)

    Article  Google Scholar 

  21. F. Beshkar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Chem. Eng. J. (2015). doi:10.1016/j.cej.2015.05.076

    Google Scholar 

  22. S. Zinatloo-Ajabshir, M. Salavati-Niasari, M. Hamadanian, RSC Adv. 5, 33792 (2015)

    Article  Google Scholar 

  23. S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Niasari, RSC Adv. 5, 56666 (2015)

    Article  Google Scholar 

  24. M. Shakouri-Arania, M. Salavati-Niasari, N. J. Chem. 38, 1179 (2014)

    Article  Google Scholar 

  25. M. Ghaed-Amini, M. Bazarganipour, M. Salavati-Niasari, J. Ind. Eng. Chem. 21, 1089 (2015)

    Article  Google Scholar 

  26. C.V.G. Reddy, S.V. Manorama, V.J. Rao, J. Mater. Sci.: Mater. Electron. 12, 137 (2001)

    Google Scholar 

  27. J. Zhong, J. Li, F. Feng, Y. Lu, J. Zeng, W. Hu, Z. Tang, J. Mol. Catal. A: Chem. 357, 101 (2012)

    Article  Google Scholar 

  28. Y. Jung Song, S. Kim, J. Ind. Eng. Chem. 7, 183 (2001)

    Google Scholar 

  29. S.A. Solopan, A.G. Belous, O.I. V’yunov, L.L. Kovalenko, Russ. J. Inorg. Chem. 53, 157 (2008)

    Article  Google Scholar 

  30. M. Bao, W. Li, P. Zhu, J. Mater. Sci. 28, 6617 (1993)

    Article  Google Scholar 

  31. D. Ghanbari, M. Salavati-Niasari, S. Karimzadeh, S. Gholamrezaei, J. NanoStruct. 4, 227 (2014)

    Google Scholar 

  32. G. Nabiyouni, S. Sharifi, D. Ghanbari, M. Salavati-Niasari, J. NanoStruct. 4, 317 (2014)

    Google Scholar 

  33. M. Panahi-Kalamuei, M. Mousavi-Kamazani, M. Salavati-Niasari, J. NanoStruct. 4, 459 (2014)

    Google Scholar 

  34. F. Beshkar, M. Salavati-Niasari, J. NanoStruct. 5, 17 (2015)

    Article  Google Scholar 

  35. M. Goudarzi, D. Ghanbari, M. Salavati-Niasari, J. NanoStruct. 5, 110 (2015)

    Google Scholar 

  36. S. Moshtaghi, M. Salavati-Niasari, D. Ghanbari, Summer J. NanoStruct. 5, 169 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to University of Kashan for supporting this work by Grant No. (159271/520).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moshtaghi, S., Zinatloo-Ajabshir, S. & Salavati-Niasari, M. Nanocrystalline barium stannate: facile morphology-controlled preparation, characterization and investigation of optical and photocatalytic properties. J Mater Sci: Mater Electron 27, 834–842 (2016). https://doi.org/10.1007/s10854-015-3824-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3824-3

Keywords

Navigation