Skip to main content
Log in

Synthesis, activatory effects, molecular docking and ADME studies as rabbit muscle pyruvate kinase activators of ureido phenyl substituted 1,4-dihydropyridine derivatives

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this study, the activation of pyruvate kinase enzyme in vitro via different urea substituents in the para position as functional groups of 1,4-dihydropyridine derivatives synthesized by Hantzsch reaction method was investigated. Elemental analysis, 1H-NMR, 13C-NMR and FT-IR spectroscopy were used to identify the ureido phenyl substituted 1,4-dihydropyridine derivatives. Virtual screening based on molecular docking supported the results of possible in vitro pyruvate kinase (PK) activators among the synthesized substances. The results showed that all compounds successfully activated PK. The strongest activator effect was shown by ethyl-4-(4-(4-(3-(3-methoxyphenyl)thioureido)phenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,7,8-hexahydroquinolin-3 (7) with an AC50 value of 87.70 µM. In molecular docking studies, full compatibility (− 3016.93 FF), binding affinities (ΔG =  − 8.58 kcal/mol), LUMO–HOMO energy gap (ΔE = 7.85 eV) in Density functional theory (DFT) studies and drug similarity score of the compounds were found to be 0.69. These results shed light on the therapeutic potential of the produced compounds to treat PK-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data are available in the article and its supplementary material.

References

  1. V. Gupta, R.N.K. Bamezai, Protein Sci. 505, 19 (2010). https://doi.org/10.1002/pro.505

    Article  CAS  Google Scholar 

  2. N. Wong, J. De Melo, D. Tang, Int. J. Cell Biol. 2013, 242513 (2013). https://doi.org/10.1155/2013/242513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. Wolf, S. Agnihotri, A. Guha, Oncotarget 190, 1 (2010). https://doi.org/10.18632/oncotarget.190,

    Article  Google Scholar 

  4. S. Strumilo, A. Tylicki, J. Evol. Biochem. Physiol. 1132, 51 (2015). https://doi.org/10.1134/S0022093015020040

    Article  CAS  Google Scholar 

  5. T.L. Dayton, T. Jacks, M.G. Vander Heiden, EMBO Rep. 17, 12 (2016). https://doi.org/10.15252/embr.201643300

    Article  CAS  Google Scholar 

  6. W.J. Israelsen, M.G. Vander Heiden, Semin. Cell Dev. Biol. 8, 43 (2015). https://doi.org/10.1016/j.semcdb.2015.08.004

    Article  CAS  Google Scholar 

  7. Bücher T, Pfleiderer G. Methods in Enzymology, (Academic Press, 1955), pp. 1 DOI: https://doi.org/10.1016/0076-6879(55)01071-9

  8. T.M. Larsen, L.T. Laughlin, H.M. Holden, I. Rayment, G.H. Reed, Biochemistry 33, 20 (1994). https://doi.org/10.1021/bi00186a033

    Article  Google Scholar 

  9. R.P. Tomás, I. Pérez-Guillén, Cancers Basel 12, 11 (2020). https://doi.org/10.3390/cancers12113244

    Article  CAS  Google Scholar 

  10. E.M.P. McDermott, A.M. Curtis, G. Goel, Cell Metab. 21, 1 (2015). https://doi.org/10.1016/j.cmet.2014.12.005

    Article  CAS  Google Scholar 

  11. S. Patel, C. Globisch, P. Pulugu, P. Kumar, A. Jain, A. Shard, Eur. J. Pharm. Sci. 2012, 170 (2022). https://doi.org/10.1016/j.ejps.2021.106112e

    Article  Google Scholar 

  12. D. Anastasiou, Y. Yu, W.J. Israelsen et al., Nat. Chem. Biol. 57, 8 (2012). https://doi.org/10.1038/nchembio.1060

    Article  CAS  Google Scholar 

  13. H. Lineweaver, D. Burk, J. Am. Chem. 56, 3 (1934). https://doi.org/10.1021/ja01318a036

    Article  Google Scholar 

  14. I. Harris, S. McCracken, T.W. Mak, Cell Res. 203, 22 (2012). https://doi.org/10.1038/cr.2011.203

    Article  CAS  Google Scholar 

  15. Q. Sun, X. Chen, J. Ma, Proc. Natl. Acad. Sci. 108, 10 (2011). https://doi.org/10.1073/pnas.1014769108

    Article  Google Scholar 

  16. D. Anastasiou, G. Poulogiannis, J.M. Asara et al., Science 334, 6060 (2011). https://doi.org/10.1126/science.1211485

    Article  CAS  Google Scholar 

  17. C.S. Deane, B.E. Phillips, C.R.G. Willis et al., Gero Sci. (2022). https://doi.org/10.1007/s11357-022-00658-5

    Article  Google Scholar 

  18. M.J. Kim, I.S. Sinam, Z. Siddique, J.H. Jeon, I.K. Lee, Diabetes Metab. J. 47, 2 (2023). https://doi.org/10.4093/dmj.2022.0305

    Article  Google Scholar 

  19. T. Demirci, B. Çelik, Y. Yildiz, S. Eriş, M. Arslan, F. Sen, B. Kilbas, RSC Adv. 6, 80 (2016). https://doi.org/10.1039/C6RA13142E

    Article  CAS  Google Scholar 

  20. M. Mamaghani, M. Sheykhan, M. Sadeghpour, F. Tavakoli, Monatshefte Chem. 13, 149 (2018). https://doi.org/10.1007/s00706-018-2166-2

    Article  CAS  Google Scholar 

  21. H. Ahankar, A. Ramazani, S.W. Joo, Res. Chem. Intermed. 21, 42 (2016). https://doi.org/10.1007/s11164-015-2163-6

    Article  CAS  Google Scholar 

  22. M. Patil, S. Karhale, A. Kudale, A. Kumbhar, S. More, V. Helavi, Curr. Sci. 116, 6 (2019). https://doi.org/10.18520/cs/v116/i6/936-942

    Article  CAS  Google Scholar 

  23. S. Besoluk, M. Kucukislamoglu, M. Nebioglu, M. Zengin, M. Arslan, J. Iran. Chem. Soc. 17, 5 (2008). https://doi.org/10.1007/BF03245816

    Article  Google Scholar 

  24. G.M. Ziarani, P. Gholamzadeh, A. Badiei, S. Asadi, A.A. Soorki, J. Chil. Chem. Soc. 60, 2 (2015). https://doi.org/10.4067/S0717-97072015000200024

    Article  Google Scholar 

  25. D.M. Stout, A.I. Meyers, Chem. Rev. 82, 222 (1982). https://doi.org/10.1021/cr00048a004

    Article  Google Scholar 

  26. K. Sharma, S. Chromone, Chem. Sel. 7, e202200540 (2022). https://doi.org/10.1002/slct.202200540

    Article  CAS  Google Scholar 

  27. A.O. Bryzgalov, M.P. Dolgikh, I.V. Sorokina, T.G. Tolstikova, V.F. Sedova, O.P. Shkurko, Bioorg. Med. Chem. Lett. 16, 1418 (2006). https://doi.org/10.1016/j.bmcl.2005.11.043

    Article  CAS  Google Scholar 

  28. S. Viveka, L.N. Madhu, G.K. Nagaraja, Monatshefte Chem. 18, 146 (2015). https://doi.org/10.1007/s00706-015-1428-5

    Article  CAS  Google Scholar 

  29. A. Trivedi, D. Dodiya, B. Dholariya, V. Kataria, V. Bhuva, V. Shah, Chem. Biol. Drug Des. 78, 875 (2011). https://doi.org/10.1111/j.1747-0285.2011.01233.x

    Article  CAS  Google Scholar 

  30. M. Khoshneviszadeh, N. Edraki, K. Javidnia, A. Alborzi, B. Pourabbas, J. Mardaneh, R. Miri, Bioorganic. Med. Chem. 14, 14574 (2009). https://doi.org/10.1016/j.bmc.2008.12.070

    Article  CAS  Google Scholar 

  31. S. Ulloora, R. Shabaraya, R. Ranganathan, A.V. Adhikari, Eur. J. Med. Chem. 19, 70 (2013). https://doi.org/10.1016/j.ejmech.2013.10.010

    Article  CAS  Google Scholar 

  32. R.H. Tale, A.H. Rodge, G.D. Hatnapure, A.P. Keche, K.M. Patil, R.P. Pawar, Med. Chem. Res. 53, 1450 (2013). https://doi.org/10.1007/s00044-012-0109-8

    Article  CAS  Google Scholar 

  33. P.J. Marín, A.G.L. Pardo, C.P. Rossignoli, M.G. Durruthy, E.O. Rodríguez, Y.V. Reyes, R.F. Acosta, S.A. Uyemura, L.C. Alberici, Toxicol. Vitr. 17, 42 (2017). https://doi.org/10.1016/j.tiv.2017.03.011

    Article  CAS  Google Scholar 

  34. Z.C. Nava, S.S. Estrada, Á.J. Guerrero, Bioorganic Med. Chem. 18, 6398 (2010). https://doi.org/10.1016/j.bmc.2010.07.008

    Article  CAS  Google Scholar 

  35. P.A. Datar, P.B. Auti, J. Comput. Methods Mol. Des. 2, 85 (2012). https://doi.org/10.13140/RG.2.2.25106.76487

    Article  CAS  Google Scholar 

  36. X. Huang, J. Su, A.U. Rao et al., Bioorganic Med. Chem. Lett. 22, 854 (2012). https://doi.org/10.1016/j.bmcl.2011.12.041

    Article  CAS  Google Scholar 

  37. M. Alvala, S. Bhatnagar, A. Ravi, V.U. Jeankumar, T.H. Manjashetty, P. Yogeeswari, D. Sriram, Bioorganic Med. Chem. Lett. 22, 3256 (2012). https://doi.org/10.1016/j.bmcl.2012.03.030

    Article  CAS  Google Scholar 

  38. M. Teleb, F.X. Zhang, J. Huang, V.M. Gadotti, A.M. Farghaly, O.M. AboulWafa, G.W. Zamponi, H. Fahmy, Bioorganic. Med. Chem. (2017). https://doi.org/10.1016/j.bmc.2017.02.015

    Article  Google Scholar 

  39. D.J. Triggle, Cell Mol. Neurobiol. 23, 23 (2003). https://doi.org/10.1023/a:1023632419813

    Article  Google Scholar 

  40. N. Pedemonte, D. Boido, O. Moran, M. Giampieri, M. Mazzei, L.J.V. Galietta, Mol. Pharmacol. 72, 191 (2007). https://doi.org/10.1124/mol.107.034702

    Article  CAS  Google Scholar 

  41. H.R. Christofk, H.M.G. Vander, N. Wu, J.M. Asara, L.C. Cantley, Nature 96, 452 (2008). https://doi.org/10.1038/nature06667

    Article  CAS  Google Scholar 

  42. A.J. Lakhter, T. Hato, B.M. Shankar, S.R. Naidu, S. Paul, S. Mahanta, PLoS ONE 13, e0191419 (2018). https://doi.org/10.1371/journal.pone.0191419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. A. Turberville, H. Semple, G. Davies, D. Ivanov, G.A. Holdgate, SLAS Discov. 27, 418 (2022). https://doi.org/10.1016/j.slasd.2022.09.001

    Article  CAS  Google Scholar 

  44. S. Adem, A. Aslan, I. Ahmed, K. Krohn, C. Guler, V. Comaklı, R. Demirdag, M. Kuzu, Arch. Pharm. 349, 230 (2016). https://doi.org/10.1002/ardp.201500357

    Article  CAS  Google Scholar 

  45. A. Shrestha, M. Chi, K. Wagner, A. Malik, J. Korpik, A. Drake, K. Fulzele, S. Guichard, P. Malik, Blood Adv. 5, 9 (2021). https://doi.org/10.1182/bloodadvances.2020003604

    Article  CAS  Google Scholar 

  46. I. Kaur, W. Jia, R.P. Kopreski, S. Selvarasah, M.R. Dokmeci, C. Pramanik, N.E. McGruer, G.P. Miller, J. Am. Chem. Soc. 130, 48 (2008). https://doi.org/10.1021/ja804515y

    Article  CAS  Google Scholar 

  47. Ü. Çalışır, F. Çakır, Turk. J. Technol. Appl. Sci. 3, 11 (2022). https://doi.org/10.5281/zenodo.7236656

    Article  Google Scholar 

  48. R.F.W. Bader, P.M. Beddall, P.E. Cade, J. Am. Chem. Soc. 93, 13 (1971). https://doi.org/10.1021/ja00742a001

    Article  Google Scholar 

  49. R.J. Ouellette, J.D. Rawn. In Structure of Organic Compounds, ed. by R.J. Ouellette, J.D. Rawn. Principles of Organic Chemistry. (Elsevier, 2015), pp. 31 DOI: https://doi.org/10.1016/B978-0-12-802444-7.00001-X

  50. Y. Mei, A.C. Simmonett, F.C. Pickard, R.A. DiStasio Jr., B.R. Brooks, Y. Shao, J. Phys. Chem. A 119, 22 (2015). https://doi.org/10.1021/acs.jpca.5b03159

    Article  CAS  Google Scholar 

  51. A.K. Ghose, T. Herbertz, R.L. Hudkins, B.D. Dorsey, J.P. Mallamo, ACS Chem. Neurosci. 3, 12 (2012). https://doi.org/10.1021/cn200100h

    Article  CAS  Google Scholar 

  52. S. Winiwarter, F. Ax, H. Lennernäs, A. Hallberg, C. Pettersson, A. Karlén, J. Mol. Graph. Model. 21, 4 (2003). https://doi.org/10.1016/s1093-3263(02)00163-8

    Article  Google Scholar 

  53. E.M. Gad, M.S. Nafie, E.H. Eltamany, M.S.A.G. Hammad, A. Barakat, A.T.A. Boraei, Molecules 25, 11 (2020). https://doi.org/10.3390/molecules25112523

    Article  CAS  Google Scholar 

  54. C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Adv. Drug Deliv. Rev. 46, 1 (2001). https://doi.org/10.1016/s0169-409x(00)00129-0

    Article  Google Scholar 

  55. A.K. Ghose, V.N. Viswanadhan, J.J. Wendoloski, J. Comb. Chem. 1, 156 (1999). https://doi.org/10.1021/cc9800071

    Article  Google Scholar 

  56. D.F. Veber, S.R. Johnson, H.Y. Cheng, B.R. Smith, K.W. Ward, K.D. Kopple, J. Med. Chem. 45, 12 (2002). https://doi.org/10.1021/jm020017n

    Article  CAS  Google Scholar 

  57. M. Lobell, M. Hendrix, B. Hinzen, J. Keldenich, H. Meier, C. Schmeck, L.R. Schohe, T. Wunberg, A. Hillisch, Chem. Med. Chem. 1, 11 (2006). https://doi.org/10.1002/cmdc.200600168

    Article  CAS  Google Scholar 

  58. A. Grosdidier, V. Zoete, O. Michielin, J. Comput. Chem. 32, 10 (2011). https://doi.org/10.1002/jcc.21797

    Article  CAS  Google Scholar 

  59. A. Grosdidier, V. Zoete, O. Michielin, Nucleic Acids Res. 39, W270 (2011). https://doi.org/10.1093/nar/gkr366

    Article  CAS  Google Scholar 

  60. E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, Comput. Chem. 25, 1605 (2004). https://doi.org/10.1002/jcc.20084

    Article  CAS  Google Scholar 

  61. N.S. Kaviyarasi, C.N. Prashantha, V.V.S. Suryanarayana. Int. J. Pharm. Pharm. Sci. 8:123 DOI: https://journals.innovareacademics.in/index.php/ijpps/article/view/10713

  62. R.O. Gould, A.M. Gray, P. Taylor, M.D. Walkinshaw, J. Am. Chem. Soc. 107, 5921 (1985). https://doi.org/10.1021/ja00307a016

    Article  Google Scholar 

  63. V.D. Kharisma, S.L. Utami, W.C. Rizky, T.G.A. Dings, M.E. Ullah, V. Jakhmola, A.P. Nugraha, Dent. J. 56, 23 (2023). https://doi.org/10.20473/j.djmkg.v56.i1.p23-29

    Article  Google Scholar 

  64. N.J. Zondlo, Aromatic–proline interactions: electronically tunable CH/π interactions. Acc. Chem. Res. 46, 1039 (2013). https://doi.org/10.1021/ar300087y

    Article  CAS  Google Scholar 

  65. S.E. Scott, J.P. Fernandez, C.M. Hadad, A.A. MacKay, Environ. Sci. Technol. 56, 951 (2022). https://doi.org/10.1021/acs.est.1c06147

    Article  CAS  Google Scholar 

  66. M. Kumari, U.K. Singh, P. Singh, R. Patel, Chem. Sel. 69, 1241 (2017). https://doi.org/10.1002/slct.201601477

    Article  CAS  Google Scholar 

  67. A.K. Aranda-Rivera, A. Cruz-Gregorio, O.E. Aparicio-Trejo, A.J. Ortega-Lozano, J. Pedraza-Chaverri, Free Radic. Biol. Med. 56, 172 (2021). https://doi.org/10.1016/j.freeradbiomed.2021.05.034

    Article  CAS  Google Scholar 

  68. U. Johnsen, A. Reinhardt, G. Landan, F.D.K. Tria, J.M. Turner, C. Davies, P. Schönheit, FEBS J. 78, 2471 (2019). https://doi.org/10.1111/febs.14837

    Article  CAS  Google Scholar 

  69. M.O. Kaya, T. Demirci, O. Ozdemir, U. Calisir, F. Sonmez, M. Arslan, Med. Chem. Res. 23, 841 (2023). https://doi.org/10.1007/s00044-023-03029-7

    Article  CAS  Google Scholar 

  70. N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, Hutchison GRJ Cheminform. 56, 33 (2011). https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  Google Scholar 

  71. Dassault Systèmes BIOVIA (2020) Discovery studio 2020 Client.

  72. A. Daina, O. Michielin, V. Zoete, J. Chem. Inf. Model. 54, 3284 (2014). https://doi.org/10.1021/ci500467k

    Article  CAS  Google Scholar 

  73. A. Daina, O. Michielin, V. Zoete, Sci. Rep. 12, 42717 (2017). https://doi.org/10.1038/srep42717

    Article  Google Scholar 

  74. F. Neese, Softw. Updat. Comput. Mol. Sci. 12, e1606 (2022). https://doi.org/10.1002/wcms.1606

    Article  Google Scholar 

  75. A.D. Becke, J. Chem. Phys. 98, 1372 (1993). https://doi.org/10.1063/1.464304

    Article  Google Scholar 

  76. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  Google Scholar 

  77. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980). https://doi.org/10.1139/p80-159

    Article  Google Scholar 

  78. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994). https://doi.org/10.1021/j100096a001

    Article  Google Scholar 

  79. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 63, 132 (2010). https://doi.org/10.1063/1.3382344

    Article  CAS  Google Scholar 

  80. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32, 1456 (2011). https://doi.org/10.1002/jcc.21759

    Article  CAS  Google Scholar 

  81. F. Weigend, Ahlrichs. Phys. Chem. Chem. Phys. 7, 3297 (2005). https://doi.org/10.1039/b508541a

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

In this study, both M.O.K. and M.A. designed the study. M.O.K., T.D., O.Ö., Y.K. and Ü.Ç. and performed all experiments/analysis, enzymatic and computational studies. All authors evaluated the results and prepared the manuscript.

Corresponding author

Correspondence to Mustafa Oğuzhan Kaya.

Ethics declarations

Confict of interest

The authors declare that they have no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7539 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, M.O., Demirci, T., Çalışır, Ü. et al. Synthesis, activatory effects, molecular docking and ADME studies as rabbit muscle pyruvate kinase activators of ureido phenyl substituted 1,4-dihydropyridine derivatives. Res Chem Intermed 50, 437–463 (2024). https://doi.org/10.1007/s11164-023-05149-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05149-6

Keywords

Navigation