Skip to main content
Log in

Cooperative rate amplification by binary surfactant (CPC/TX-100) nano-aggregates on the diperiodatocuprate(III) (DPC) oxidation of 2-butanol in aqueous medium

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The present research work is concerned with the systematic account of the catalytic behaviour of binary surfactant solutions during the oxidation of 2-butanol by the diperiodatocuprate(III) copper(III)–periodate complex (DPC) in an aqueous solvent. The work primarily deals with the kinetics of the mixed micelle diperiodatocuprate(III) copper(III)–periodate complex (DPC)-catalysed oxidation of 2-butanol by maintaining pseudo-first-order reaction conditions. The cetylpyridinium chloride (CPC)/Triton X-100 (TX-100) mixed micelle serves as a nano-reactor for the oxidation reaction offering a micro-heterogeneous system in an aqueous media. A strong and pronounced catalytic effect has been exhibited by a mixture of CPC and TX-100 surfactants in 1:7 molar ratio compared to any of the single surfactant. The binary surfactant system cooperatively accelerated the oxidation rate of 2-butanol by reducing the reaction completion time up to 40 times. The cetyltrimethylammonium bromide (CTAB) micelle in the reaction system substantially decreased the oxidation rate compared to the reaction in aqueous media only. Proton NMR spectra are conducted to characterize the oxidation product 2-butanone. NMR data precisely correlate the interaction behaviour of CPC and TX-100 in association with the formation of mixed micellar aggregates in the reaction system. The calculated kinetic parameters such as rate constant (kobs), half-life (t1/2) and effective rate constant (keff) values for the oxidation of 2-butanol by DPC in binary surfactant system are correlated with micellar pseudo-phase model and proton NMR analysis of mixed micelles. The blended micellar catalyst has been recovered and recycled for the next reaction as soon as the oxidation of 2-butanol is finished up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Scheme 2.
Scheme 3.
Fig. 4
Fig. 5
Fig. 6
Scheme 4.
Fig. 7
Scheme 5.
Scheme 6.

Similar content being viewed by others

Availability of data and materials

Data will be made available on requests.

References

  1. K.M. Naik, S.T. Nandibewoor, Catal. Sci. Technol. 1, 1232 (2011)

    Article  CAS  Google Scholar 

  2. N.P. Shettia, S.J. Malode, S.T. Nandibewoor, Polyhedron 30, 1785 (2011)

    Article  Google Scholar 

  3. S.I. Sinkov, G.J. Lumetta, Radiochim. Acta 103, 541 (2015)

    Article  CAS  Google Scholar 

  4. K.J. Adaikalasamy, N.S. Venkataramanan, S. Rajagopal, Tetrahedron 59, 3613 (2003)

    Article  Google Scholar 

  5. S. Malik, A. Ghosh, B. Saha, J. Solut. Chem. 45, 109 (2016)

    Article  CAS  Google Scholar 

  6. R.A. Sheldon, Curr. Opin. Green Sustain. Chem. 18, 13 (2019)

    Article  Google Scholar 

  7. J.M. Bayne, D.W. Stephan, Chem. Soc. Rev. 45, 765 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. C. Parmeggiani, F. Cardona, Green Chem. 14, 547 (2012)

    Article  CAS  Google Scholar 

  9. P. Sar, A. Ghosh, A. Scarso, B. Saha, Res. Chem. Intermed. 45, 6021 (2019)

    Article  CAS  Google Scholar 

  10. M. Amde, J.F. Liu, L. Pang, Environ. Sci. Technol. 49, 12611 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. D.K. Romney, F.H. Arnold, B.H. Lipshutz, C.J. Li, J. Org. Chem. 83, 7319 (2018)

    Article  CAS  PubMed  Google Scholar 

  12. L.S. Romsted, in Supramolecular Chemistry: From Molecules to Nanomaterials. ed. by P.A. Gale, J.W. Steed (Wiley, Hoboken, 2012), p.181

    Google Scholar 

  13. A. Ghosh, R. Saha, P. Sar, B. Saha, J. Mol. Liq. 186, 122 (2013)

    Article  CAS  Google Scholar 

  14. S. Malik, A. Ghosh, P. Sar, M.H. Mondal, K. Mahali, B. Saha, J. Chem. Sci. 129, 637 (2017)

    Article  CAS  Google Scholar 

  15. P. Sar, A. Ghosh, S. Malik, B. Saha, J. Carbohydr. Chem. 35, 86 (2016)

    Article  CAS  Google Scholar 

  16. D. Hoell, T. Mensing, R. Roggenbuck, M. Sakuth, E. Sperlich, T. Urban, W. Neier, G. Strehlke, Ullmann’s Encycl. Ind. Chem. 6, 431 (2009)

    Google Scholar 

  17. A. Ghosh, K. Sengupta, R. Saha, B. Saha, J. Mol. Liq. 198, 369 (2014)

    Article  CAS  Google Scholar 

  18. B. Chowdhury, S.M. Rahaman, A. Ghosh, K. Mahali, P. Sar, B. Saha, J. Mol. Liq. 368, 120817 (2022)

    Article  CAS  Google Scholar 

  19. B. Samiey, C.H. Cheng, J. Wu, J. Chem. 2014, 1 (2014)

    Article  Google Scholar 

  20. J. Clint, J. Chem. Soc. 71, 1327 (1975)

    CAS  Google Scholar 

  21. G. Sharma, A. Naqvi, Colloids Surf. A Physico Chem. Eng. Asp. 385, 63 (2011)

    Article  Google Scholar 

  22. A. Pal, R. Punia, G.P. Dubey, J. Mol. Liq. 337, 116355 (2021)

    Article  CAS  Google Scholar 

  23. A.D. Regno, P.B. Warren, D.J. Bray, R.L. Anderson, J. Phys. Chem. B 125, 5983 (2021)

    Article  PubMed  Google Scholar 

  24. M. Omer, I. Ali, S. Kareem, Chem. Pap. 76, 7189 (2022)

    Article  CAS  Google Scholar 

  25. D.R. Perinelli, M. Cespi, N. Lorusso, G.F. Palmieri, G. Bonacucina, P. Blasi, Langmuir 36, 5745 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. N. Azum, M.A. Rub, M.A. Asiri, J. Mol. Liq. 196, 14 (2014)

    Article  CAS  Google Scholar 

  27. K.M. Sachin, S.A. Karpe, M. Singh, A. Bhattarai, Heliyon 5, e01510 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M. Poša, J. Mol. Liq. 334, 116158 (2021)

    Article  Google Scholar 

  29. R. Saha, A. Ghosh, B. Saha, Chem. Eng. Sci. 99, 23 (2013)

    Article  CAS  Google Scholar 

  30. X. Han, M. Lu, Y. Fan, Y. Li, A. Yuxi, K. Holmberg, Tenside Surfactants Deterg. 58, 164 (2021)

    Article  CAS  Google Scholar 

  31. Z. Chang, X. Chen, Y. Peng, Miner. Eng. 121, 66 (2018)

    Article  CAS  Google Scholar 

  32. A. Ali, S. Uzair, N.A. Malik, M. Ali, J. Mol. Liq. 196, 395 (2014)

    Article  CAS  Google Scholar 

  33. S. Amjad, S. Shaukat, H.M.A.U. Rahman, M. Usman, Z.H. Farooqi, M.F. Nazar, J. Mol. Liq. 369, 120958 (2023)

    Article  CAS  Google Scholar 

  34. F. Bukhtawar, M. Usman, N. Akram, A. Haq, Z. Ahmad, S. Raza, S. Younis, M.F. Nazar, Colloid Polym. Sci. 300, 1205 (2022)

    Article  CAS  Google Scholar 

  35. S. Irshad, H. Sultana, M. Usman, N. Akram, Z.H. Farooqi, A. Yusaf, M.F. Nazar, J. Dispers. Sci. Technol. 44, 1044 (2023)

    Article  CAS  Google Scholar 

  36. A. Kumar, G. Kaur, S.K. Kansal, G.R. Chaudhary, S.K. Mehta, J. Chem. Thermodyn. 93, 115 (2016)

    Article  CAS  Google Scholar 

  37. S. Göktürk, G. Keskin, R.Y.C. Talman, N. Çakır, Color. Technol. 133, 362 (2017)

    Article  Google Scholar 

  38. M. Cortes-Clerget, J. Yu, J.R.A. Kincaid, P. Walde, F. Gallou, B.H. Lipshutz, Chem. Sci. 12, 4237 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. M. Cortes-Clerget, N. Akporji, J. Zhou, F. Gao, P. Guo, M. Parmentier, F. Gallou, J.Y. Berthon, B.H. Lipshutz, Nat. Commun. 10, 2169 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  40. S. Obradović, M. Poša, J. Chem. Thermodyn. 110, 41 (2017)

    Article  Google Scholar 

  41. A. Ghosh, R. Saha, B. Saha, J. Mol. Liq. 196, 223 (2014)

    Article  CAS  Google Scholar 

  42. S. Chowdhury, A. Rakshit, A. Acharjee, D. Kumar, B. Saha, J. Mol. Liq. 346, 117118 (2022)

    Article  CAS  Google Scholar 

  43. B. Chowdhury, M.H. Mondal, M.K. Barman, B. Saha, Res. Chem. Intermed. 45, 789 (2019)

    Article  CAS  Google Scholar 

  44. S.M. Patil, A.M. Bagoji, S.B. Konnur, S.T. Nandibewoor, J. Phys. Org. Chem. 34, e4146 (2021)

    CAS  Google Scholar 

  45. B. Chowdhury, P. Sar, D. Kumar, B. Saha, J. Mol. Liq. 347, 117993 (2022)

    Article  CAS  Google Scholar 

  46. Q.H. Le, C. Friebe, W.C. Wang, L. Wondraczek, J. Non-Cryst. Solids: X 4, 100037 (2019)

    CAS  Google Scholar 

  47. A. Tong, X. Tang, F. Zhang, B. Wang, Spectrochim. Acta A Mol. Biomol. Spectrosc. 234, 118259 (2020)

    Article  CAS  PubMed  Google Scholar 

  48. R.R. Hosamani, N.P. Shetti, S.T. Nandibewoor, Kinet. Catal. 50, 530 (2009)

    Article  CAS  Google Scholar 

  49. X. Cui, Y. Jiang, C. Yang, X. Lu, H. Chen, S. Mao, M. Liu, H. Yuan, P. Luo, Y. Du, J. Phys. Chem. B 114, 7808 (2010)

    Article  CAS  PubMed  Google Scholar 

  50. S. Mukherjee, D. Mitra, S.C. Bhattacharya, A.K. Panda, S.P. Moulik, Colloid J. 71, 677 (2009)

    Article  CAS  Google Scholar 

  51. W. Azeem, P. John, M.F. Nazar, M. Ashfaq, I.U. Khan, A. Riaz, S. Sharif, J. Solut. Chem. 47, 1048 (2018)

    Article  CAS  Google Scholar 

  52. M.F. Nazar, M. Abid, M. Danish, M. Ashfaq, A.M. Khan, M.N. Zafar, S. Mehmood, A. Asif, J. Mol. Liq. 212, 142 (2015)

    Article  CAS  Google Scholar 

  53. W. Azeem, P. John, M.F. Nazar, I.U. Khan, A. Riaz, S. Sharif, J. Mol. Liq. 244, 135 (2017)

    Article  CAS  Google Scholar 

  54. M. Danish, M. Ashiq, M.F. Nazar, J. Dispers. Sci. Technol. 38, 837 (2017)

    Article  CAS  Google Scholar 

  55. M.F. Nazar, M. Raheel, S.S. Shah, M. Danish, M. Ashfaq, M.N. Zafar, M. Siddiq, J. Solut. Chem. 43, 632 (2014)

    Article  CAS  Google Scholar 

  56. T. Mehling, T. Ingram, I. Smirnova, Langmuir 28, 118 (2012)

    Article  CAS  PubMed  Google Scholar 

  57. T. Shen, S. Zhou, J. Ruan, X. Chen, X. Liu, X. Ge, C. Qian, J. Colloid Interface Sci. 287, 102299 (2021)

    Article  CAS  Google Scholar 

  58. B.H. Lipshutz, M. Hageman, J.C. Fennewald, R.T.H. Linstadt, E.D. Slack, K.R. Voigtritter, Chem. Commun. 50, 11378 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

The authors did not receive funds, grants or other support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

BC and SMR conducted the main research experiments and wrote the draft of the manuscript. AG and BC analysed the data. BC and AG revised the manuscript. BS supervised the manuscript.

Corresponding author

Correspondence to Bidyut Saha.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Ethical approval

This research did not contain any studies involving animals or human participants, nor did it take place on any private or protected areas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4224 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, B., Ghosh, A., Rahaman, S.M. et al. Cooperative rate amplification by binary surfactant (CPC/TX-100) nano-aggregates on the diperiodatocuprate(III) (DPC) oxidation of 2-butanol in aqueous medium. Res Chem Intermed 49, 4041–4063 (2023). https://doi.org/10.1007/s11164-023-05069-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05069-5

Keywords

Navigation