Skip to main content
Log in

Thermodynamic Characteristics and Spectral-Luminescent Properties of N-m-Tolylbenzamide in Microheterogeneous Surfactant Self-Assemblies

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

To model the binding to biomembranes, the interactions of potent N-m-tolylbenzamide (NTB) with a cationic surfactant, cetyltrimethylammonium bromide (CTAB) and an anionic surfactant, sodium dodecyl sulfate (SDS), have been investigated. The study was carried out by quantifying the absorption and fluorescence emission spectra of NTB as a function of pre-micellar to post-micellar surfactant concentrations in the temperature range of 25–50 °C. NTB is a strongly fluorescent compound that exhibits intense violet fluorescence. Using mathematical models, the water–micelle partition coefficient (K x), surfactant–NTB binding constant (K b), binding capacity (n b) and the degree of counter-ion binding (α) are discussed from the thermodynamic viewpoint, considering the thermodynamic parameters of additive solubilization (\( \Delta G_{\text{p}}^{^\circ } ,\,\Delta H_{\text{p}}^{^\circ } ,\,\Delta S_{\text{p}}^{^\circ } \)). The high values of all interactions, especially when the surface charge of the organized medium is cationic, ensure that there are greater interactions between the NTB and CTAB than with SDS. The NTB molecule is found to be located at only one binding site of each surfactant and probably exhibits static quenching rather than a collisional quenching mechanism. These findings have been confirmed by the binding capacity for the NTB–surfactant combinational system and Stern–Volmer quenching constant (K sv) values. The observed depression in binding strength of the counterions with temperature increase favors the promising solubilization of NTB in the palisade layer of micelles leading to penetration binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schott, H.: Colloidal Dispersion. In Remington: The Science and Practice of Pharmacy. Lippincott Williams and Wilkins (2000)

  2. Nairn, J.G.: Solutions, Emulsions, Suspensions and Extracts. In Remington: The Science and Practice of Pharmacy. Lippincott Williams and Wilkins (2000)

  3. Nazar, M.F., Khan, A.M., Shah, S.S.: Microemulsion system with improved loading of piroxicam: a study of microstructure. AAPS Pharm. Sci. Tech. 10, 1286–1294 (2009)

    Article  CAS  Google Scholar 

  4. Kizilbash, N.A., Asif, S., Nazar, M.F., Shah, S.S., Alenizi, D.: Design of a microemulsion based drug delivery system for diclofenac sodium. J. Chem. Soc. Pak. 33, 1–6 (2011)

    CAS  Google Scholar 

  5. Din, K., Rub, M.A., Naqvi, A.Z.: Micellization of mixtures of amphiphilic drugs and cationic surfactants: a detailed study. Colloids Surf. B 92, 16–24 (2012)

    Article  Google Scholar 

  6. Badshah, A., Nawaz, S., Nazar, M.F., Shah, S.S., Hasan, A.: Synthesis of novel fluorescent cyclohexenone derivatives and their partitioning study in ionic micellar media. J. Fluoresc. 20, 1049–1059 (2010)

    Article  CAS  Google Scholar 

  7. Rosen, M.J., Kunjappu, J.T.: Surfactants and Interfacial Phenomena, 4th edn, pp. 202–234. John Willey and Sons Inc., Hoboken (2012)

    Book  Google Scholar 

  8. Nazar, M.F., Shah, S.S., Khosa, M.A.: Interaction of azo dye with cationic surfactant under different pH conditions. J. Surf. Deterg. 13, 529–537 (2010)

    Article  CAS  Google Scholar 

  9. Khosa, M.A., Shah, S.S., Nazar, M.F.: UV–Visible spectrometric study and micellar enhanced ultrafiltration of alizarin red s dye. J. Disper. Sci. Tech. 32, 1634–1640 (2011)

    Article  CAS  Google Scholar 

  10. Krauel, K., Davies, N.M., Hook, S., Rades, T.: Using different structure types of microemulsions for the preparation of poly(alkylcyanoacrylate) nanoparticles by interfacial polymerization. J. Control Release 106, 76–87 (2005)

    Article  CAS  Google Scholar 

  11. Tong, S.W., Xiang, B., Dong, D.W., Qi, X.R.: Enhanced antitumor efficacy and decreased toxicity by self-associated docetaxel in phospholipid-based micelles. Int. J. Pharm. 434, 413–419 (2012)

    Article  CAS  Google Scholar 

  12. Rodrigues, C., Gameiro, P., Reis, S., Lima, J., de Castro, B.: Interaction of grepafloxacin with large unilamellar liposomes: partition and fluorescence studies reveal the importance of charge interactions. Langmuir 18, 10231–10236 (2002)

    Article  CAS  Google Scholar 

  13. Schreier, S., Malheiros, S.V.P., de Paula, E.: Surface active drugs: self-association and interaction with membranes and surfactants, physicochemical and biological aspects. Biochim. Biophys. Acta 1508, 210–234 (2000)

    Article  CAS  Google Scholar 

  14. Kim, E.J., Shah, D.O.: Cloud point phenomenon in amphiphilic drug solutions. Langmuir 18, 10105–10108 (2002)

    Article  CAS  Google Scholar 

  15. Saeed, A., Irfan, M., Bolte, M.: 4-Chloro-N-m-tolyl-benzamide. Acta Cryst. E65, o1334 (2009)

    Google Scholar 

  16. Saeed, A., Hussain, S., Flörke, U.: The crystal structure of 2-nitro-N-(4-nitrophenyl)benzamide. Turk. J. Chem. 32, 481–486 (2008)

    CAS  Google Scholar 

  17. Olsson, A.R., Lindgren, H., Pero, R.W., Leanderson, T.: Mechanism of action for N-substituted benzamide-induced apoptosis. Br. J. Cancer 86, 971–978 (2002)

    Article  CAS  Google Scholar 

  18. Zhang, Q.W., Li, J.Q.: Synthesis and biological evaluation of N-(aminopyridine) benzamide analogues as histone deacetylase inhibitors. Bull. Korean Chem. Soc. 33, 535–540 (2012)

    Article  CAS  Google Scholar 

  19. Xu, J., Lecanu, L., Tan, M., Yao, W., Greeson, J., Papadopoulos, V.: The benzamide derivative N-[1-(7-tert-butyl-1H-indol-3-ylmethyl)-2-(4-cyclopropanecarbonyl-3 methyl piperazin-1-yl)-2-oxo-ethyl]-4-nitro-benzamide (SP-10) reduces HIV-1 infectivity in vitro by modifying actin dynamics. Antivir. Chem. Chemother. 17, 331–342 (2006)

    CAS  Google Scholar 

  20. Lindgren, H., Pero, R.W., Ivars, F., Leanderson, T.: N-substituted benzamides inhibit nuclear factor-kappa B and nuclear factor of activated T cells activity while inducing activator protein 1 activity in T lymphocytes. Mol. Immunol. 38, 267–277 (2001)

    Article  CAS  Google Scholar 

  21. Saeed, A., Zaman, S., Bolte, M.: N-(2-Chloro-4-nitrophenyl)-2-nitrobenzamide. Acta Cryst. E64, 0705 (2008)

    Google Scholar 

  22. William, B., Christopher, W., Niklas, P.: 4-(Phenyl-piperazinyl-methyl)benzamide derivatives and their use for the treatment of pain, anxiety or gastrointestinal disorders. U.S. Patent No. 8022074 (2011)

  23. Eisenhut, M., Hull, W.E., Mohammed, A., Mier, W., Lay, D., Just, W., Gorgas, K., Lehmann, W.D., Haberkorn, U.: Radioiodinated N-(2-diethylaminoethyl)benzamide derivatives with high melanoma uptake: structure-affinity relationships, metabolic fate, and intracellular localization. J. Med. Chem. 43, 3913–3922 (2000)

    Article  CAS  Google Scholar 

  24. Jin, R., Zhang, J.: Theoretical investigation of chemosensor for fluoride anion based on amidophthalimide derivatives. Theor. Chim. Acta 124, 225–234 (2009)

    Article  CAS  Google Scholar 

  25. Hiroyuki, I., Kaoru, K., Shinichi, M., Takeo, M., Norimasa, Y.: Benzamide derivatives and plant growth regulants containing them. U.S. Patent No. 5043006 (1991)

  26. Marquezin, C.A., Hirata, I.Y., Juliano, L., Ito, A.S.: Spectroscopic characterization of 2-amino-N-hexadecyl-benzamide (AHBA), a new fluorescence probe for membranes. Biophys. Chem. 124, 125–133 (2006)

    Article  CAS  Google Scholar 

  27. Raheel, M., Shah, S.S., Khosa, M.A.: Thermodynamics of surfactant micellization in presence of benzamide derivatives. J. Disper. Sci. Tech. 32, 507–511 (2011)

    Article  CAS  Google Scholar 

  28. Kawamura, H., Manabe, M., Miyamoto, Y., Fujita, Y., Tokunaga, S.: Partition coefficient of homologous-omega-phenylalkanols between water and sodium dodecyl sulfate micelles. J. Phys. Chem. 93, 5536–5540 (1989)

    Article  CAS  Google Scholar 

  29. Castellan, G.W.: Physical Chemistry. Benjamin/Cummings Publishing Company, California (1983)

    Google Scholar 

  30. Tunç, S., Duman, O., Kancı, B.: Spectrophotometric investigation of the interactions between cationic dye (C.I. Basic Yellow 2) and anionic surfactant (sodium dioctylsulfosuccinate) in the premicellar and micellar region. Dyes Pigments 94, 233–238 (2012)

    Article  Google Scholar 

  31. Nazar, M.F., Khan, A.M., Shah, S.S.: Interaction of azo dye with cationic surfactant under different pH conditions. J. Disper. Sci. Tech. 31, 596–605 (2010)

    Article  CAS  Google Scholar 

  32. Kadam, Y., Yerramilli, U., Bahadur, A.: Solubilization of poorly water-soluble drug carbamazepine in pluronic micelles: effect of molecular characteristics, temperature and added salt on the solubilising capacity. Colloids Surf. B 72, 141–147 (2009)

    Article  CAS  Google Scholar 

  33. Krishna, A.K., Flanagan, D.R.: Micellar solubilization of a new antimalarial drug, β-arteether. J. Pharm. Sci. 78, 574–576 (1989)

    Article  CAS  Google Scholar 

  34. Leibner, J.E., Jacobus, J.: Charged micelle shape and size. J. Phys. Chem. 81, 130–135 (1977)

    Article  CAS  Google Scholar 

  35. Khamis, M., Bulos, B.: Azo dyes interactions with surfactants. Determination of the critical micelle concentration from acid–base equilibrium. Dyes Pigments 66, 179–183 (2005)

    Article  CAS  Google Scholar 

  36. Buwalda, R.T., Jonker, J.M., Engberts, J.B.F.N.: Aggregation of azo dyes with cationic amphiphils at low concentrations in aqueous solutions. Langmuir 15, 1083–1089 (1999)

    Article  CAS  Google Scholar 

  37. Miyashita, Y., Hayano, S.: Kinetic study of the penetration of an anthraquinoid acidic dye into cationic micelles. Bull. Chem. Soc. Jpn 54, 3249–3252 (1981)

    Article  CAS  Google Scholar 

  38. Wang, L., Verrall, R.E.: Apparent molar volume and apparent molar adiabatic compressibility studies of anesthetic molecules in aqueous micelle solutions of CTAB and CTAC as a function of surfactant concentration and temperature. J. Phys. Chem. 98, 4368–4374 (1994)

    Article  CAS  Google Scholar 

  39. Kang, J., Liu, Y., Xie, M.X., Li, S., Jiang, M., Wang, Y.D.: Interactions of human serum albumin with chlorogenic acid and ferulic acid. Biochim. Biophys. Acta 1674, 205–214 (2004)

    Article  CAS  Google Scholar 

  40. Techen, A., Hille, C., Dosche, C., Kumke, M.U.: Fluorescence study of drug–carrier interactions in CTAB/PBS buffer model systems. J. Colloid Interface Sci. 377, 251–261 (2012)

    Article  CAS  Google Scholar 

  41. Zhou, T., Ao, M., Xu, G., Liu, T., Zhang, J.: Interactions of bovine serum albumin with cationic imidazolium and quaternary ammonium gemini surfactants: effects of surfactant architecture. J. Colloid Interface Sci. 389, 175–181 (2013)

    Article  CAS  Google Scholar 

  42. Ahmad, B., Parveen, S., Khan, R.H.: Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: a novel approach directly assigning binding site. Biomacromolecules 7, 1350–1356 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors express gratitude to the Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan for provision of lab facility and gratefully acknowledge the Higher Education Commission of Pakistan for sponsorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Faizan Nazar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazar, M.F., Raheel, M., Shah, S.S. et al. Thermodynamic Characteristics and Spectral-Luminescent Properties of N-m-Tolylbenzamide in Microheterogeneous Surfactant Self-Assemblies. J Solution Chem 43, 632–647 (2014). https://doi.org/10.1007/s10953-014-0151-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0151-x

Keywords

Navigation