Skip to main content
Log in

Real-time detection of organic acid gases by QCM sensor based on acidified MWCNTs/PANI nanocomposites

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A quartz crystal microbalance (QCM) gas sensor, based on the acidified multi-walled carbon nanotubes/polyaniline (MWCNTs/PANI) nanocomposite, was developed to detect the organic acid gas in this study. The nanocomposite was obtained by direct polymerization of PANI on the surface of MWCNTs via in situ chemical oxidation and characterized morphologically and chemically by field emission scanning electron microscope, X-ray diffraction and Fourier transform infrared. The experimental results indicated that the MWCNTs/PANI modified QCM sensors had high sensitivity (38.51 Hz/(mg/m3) for formic acid gas and 30.70 Hz/(mg/m3) for acetic acid gas), excellent repeatability, reversibility, and long-term stability. The repeatability cycle tests of the sensor produced highly similar across the concentration gradients, achieving over 90% frequency recovery. Additionally, the putative adsorption mechanism on formic and acetic acid gas molecules could be mainly attributed to hydrogen bonding and plentiful active sites. This work indicated this acidified MWCNTs/PANI-based QCM gas sensor might represent a promising approach for real-time organic acid gas detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available in the article.

References

  1. T. Mochizuki, A. Tani, Atmos. Environ. 247, 118149 (2021)

    Article  CAS  Google Scholar 

  2. S.B. Lin, T.M. Swager, ACS Sens. 3, 569 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Y. Wu, C.X. Hua, Z.S. Liu, J.L. Yang, R.R. Huang, M. Li, K.Q. Liu, R. Miao, Y. Fang, Anal. Chem. 93, 7094 (2021)

    Article  CAS  PubMed  Google Scholar 

  4. R.L. Liu, W.T. Qu, B.H. Dou, Z.F. Li, G. Li, Chem. Asian J. 15, 182 (2020)

    Article  CAS  PubMed  Google Scholar 

  5. Y. Zhang, J. Liu, X. Chu, S. Liang, L. Kong, J. Alloys Compd. 832, 153355 (2020)

    Article  CAS  Google Scholar 

  6. L.T. Gibson, C.M. Watt, Corros. Sci. 52, 172 (2010)

    Article  CAS  Google Scholar 

  7. A. Cincinelli, T. Martellini, A. Amore, L. Dei, G. Marrazza, E. Carretti, F. Belosi, F. Ravegnani, P. Leva, Sci. Total Environ. 572, 333 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. S.H. Smedemark, M. Ryhl-Svendsen, J. Cult. Herit. 55, 309 (2022)

  9. M. Ryhl-Svendsen, J. Glastrup, Atmos. Environ. 36, 3909 (2002)

    Article  CAS  Google Scholar 

  10. D.M. Bastidas, M. Criado, S. Fajardo, V.M. La Iglesia, E. Cano, J.M. Bastidas, Int. Mater. Rev. 55, 99 (2010)

    Article  CAS  Google Scholar 

  11. S.N. Songkhla, T. Nakamoto, Chemosensors 9, 31 (2021)

    Article  Google Scholar 

  12. S.K. Vashist, P. Vashist, J. Sensors 2011, 13 (2011)

  13. K.W. Liu, C. Zhang, Food Chem. 334, 127615 (2021)

    Article  CAS  PubMed  Google Scholar 

  14. Y. Acikbas, Res. Chem. Intermed. 48, 1863 (2022)

    Article  CAS  Google Scholar 

  15. O. Alev, N. Sarıca, O. Özdemir, L.Ç. Arslan, S. Büyükköse, Z.Z. Öztürk, J. Alloys Compd. 826, 154177 (2020)

  16. Z. Li, M. Teng, R. Yang, F. Lin, Y. Fu, W. Lin, J. Zheng, X. Zhong, X. Chen, B. Yang, Y. Liao, Sens. Actuators B Chem. 361, 131691 (2022)

    Article  CAS  Google Scholar 

  17. X. Liu, J. Wang, J. Hou, Mater. Sci. Semicond. Process. 147, 106764 (2022)

    Article  CAS  Google Scholar 

  18. C. Qin, B. Wang, Y. Wang, Sens. Actuators B Chem. 351, 130943 (2021)

    Article  Google Scholar 

  19. M.R. Tchalala, P.M. Bhatt, K.N. Chappanda, S.R. Tavares, K. Adil, Y. Belmabkhout, A. Shkurenko, A. Cadiau, N. Heymans, G. De Weireld, G. Maurin, K.N. Salama, M. Eddaoudi, Nat. Commun. 10, 1328 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. F. Fauzi, A. Rianjanu, I. Santoso, K. Triyana, Sens. Actuator A Phys. 330, 112837 (2021)

  21. Z.H. Xiao, L.B. Kong, S.C. Ruan, X.L. Li, S.J. Yu, X.Y. Li, Y. Jiang, Z.J. Yao, S. Ye, C.H. Wang, T.S. Zhang, K. Zhou, S. Li, Sens. Actuators B Chem. 274, 235 (2018)

  22. N.D. Hoang, V. Van Cat, M.H. Nam, V.N. Phan, A.T. Le, N. Van Quy, Sens. Actuator A Phys. 295, 696 (2019)

    Article  CAS  Google Scholar 

  23. X. Gao, T. Zhang, Sens. Actuators B Chem. 277, 604 (2018)

    Article  CAS  Google Scholar 

  24. H. Sohrabi, S. Ghasemzadeh, Z. Ghoreishi, M.R. Majidi, Y. Yoon, N. Dizge, A. Khataee, Mater. Chem. Phys. 299, 127512 (2023)

    Article  CAS  Google Scholar 

  25. K. Zhang, R. Hu, G. Fan, G. Li, Sens. Actuators B Chem. 243, 721 (2017)

    Article  CAS  Google Scholar 

  26. Z. Kang, D. Zhang, T. Li, X. Liu, X. Song, Sens. Actuators B Chem. 345, 130299 (2021)

    Article  CAS  Google Scholar 

  27. S.M. Wang, H.L. Lan, G.W. Guan, Q.Y. Yang, A.C.S. Appl, Mater. Interfaces 14, 40072 (2022)

    Article  CAS  Google Scholar 

  28. G. Jeevitha, S. Sivaselvam, S. Keerthana, D. Mangalaraj, N. Ponpandian, Chemosphere 297, 134023 (2022)

    Article  CAS  PubMed  Google Scholar 

  29. T. Han, A. Nag, S. Chandra Mukhopadhyay, Y. Xu, Sens. Actuator A Phys. 291, 107 (2019)

    Article  CAS  Google Scholar 

  30. M.I. Kim, Y.S. Lee, J. Nanosci. Nanotechnol. 16, 4310 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. P. Gholami, A. Rashidi, M. Khaleghi Abbasabadi, M. Pourkhalil, M. Jahangiri, N. Izadi, Res. Chem. Intermed. 46, 3911 (2020)

    Article  CAS  Google Scholar 

  32. H.L. Lu, C.J. Lu, W.C. Tian, H.J. Sheen, Talanta 131, 467 (2015)

    Article  CAS  PubMed  Google Scholar 

  33. L.P.L. Gonçalves, M. Meledina, A. Meledin, D.Y. Petrovykh, J.P.S. Sousa, O.S.G.P. Soares, Y.V. Kolen’ko, M.F.R. Pereira, Carbon 195, 35 (2022)

    Article  Google Scholar 

  34. H.L. Tai, X.H. Bao, Y.F. He, X.S. Du, G.Z. Xie, Y.D. Jiang, IEEE Sens. J. 15, 6904 (2015)

    Article  CAS  Google Scholar 

  35. D. Zhang, Z. Kang, X. Liu, J. Guo, Y. Yang, Sens. Actuators B Chem. 357, 131419 (2022)

    Article  CAS  Google Scholar 

  36. J. Kroutil, A. Laposa, J. Voves, M. Davydova, J. Nahlik, P. Kulha, M. Husak, IEEE Sens. J. 18, 3759 (2018)

    Article  CAS  Google Scholar 

  37. S. Ghezelbash, M. Yousefi, M. Hossaini Sadr, S. Baghshahi, Res. Chem. Intermed. 45, 5559 (2019)

    Article  CAS  Google Scholar 

  38. M. Turemis, D. Zappi, M.T. Giardi, G. Basile, A. Ramanaviciene, A. Kapralovs, A. Ramanavicius, R. Viter, Talanta 211, 120658 (2020)

    Article  CAS  PubMed  Google Scholar 

  39. K. Domagała, M. Borlaf, J. Traber, D. Kata, T. Graule, Mater. Lett. 253, 272 (2019)

    Article  Google Scholar 

  40. B. Smith, K. Wepasnick, K.E. Schrote, A.R. Bertele, W.P. Ball, C. O’Melia, D.H. Fairbrother, Environ. Sci. Technol. 43, 819 (2009)

    Article  CAS  PubMed  Google Scholar 

  41. J.F. Cai, Y. Yan, W.W. Wang, Y.Y. Ma, L.K. Cai, L.M. Wu, H. Zhou, Environ. Technol. 44, 751 (2023)

    Article  CAS  PubMed  Google Scholar 

  42. S. Bilal, S. Gul, K. Ali, A.-U.-H.A. Shah, Synth. Met. 162, 2259 (2012)

    Article  CAS  Google Scholar 

  43. M.M. Ayad, G. El-Hefnawey, N.L. Torad, J. Hazard. Mater. 168, 85 (2009)

    Article  CAS  PubMed  Google Scholar 

  44. G. Mandal, R.B. Choudhary, Res. Chem. Intermed. 45, 3755 (2019)

    Article  CAS  Google Scholar 

  45. R. Awata, M. Shehab, A. El Tahan, M. Soliman, S. Ebrahim, Electrochim. Acta. 347, 136229 (2020)

    Article  CAS  Google Scholar 

  46. M. Yaghoubi-berijani, B. Bahramian, Res. Chem. Intermed. 47, 2311 (2021)

    Article  CAS  Google Scholar 

  47. M.A. Atieh, O.Y. Bakather, B. Al-Tawbini, A.A. Bukhari, F.A. Abuilaiwi, M.B. Fettouhi, Bioinorg. Chem. Appl. 2010, 9 (2010)

    Article  Google Scholar 

  48. A. Kumar, V. Kumar, M. Kumar, K. Awasthi, Polym. Compos. 39, 3858 (2018)

    Article  CAS  Google Scholar 

  49. I. Bekri-Abbes, E. Srasra, J. Polym. Res. 18, 659 (2011)

    Article  CAS  Google Scholar 

  50. H.R. Tantawy, D.E. Aston, J.R. Smith, J.L. Young, A.C.S. Appl, Mater. Interfaces 5, 4648 (2013)

    Article  CAS  Google Scholar 

  51. L.Y. Wang, J.K. Gao, J.Q. Xu, Sens. Actuator B-Chem. 293, 71 (2019)

  52. Z.F. Pei, X.F. Ma, P.F. Ding, W.M. Zhang, Z.Y. Luo, G.A. Li, Sensors 10, 8275 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. E. Chelmecka, K. Pasterny, T. Kupka, L. Stobinski, J. Mol. Struct. Theochem 948, 93 (2010)

    Article  CAS  Google Scholar 

  54. C.K. Tan, D.J. Blackwood, Sens. Actuators B Chem. 71, 184 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2020YFC1522501) and the Cultural Relics Protection Industry Standard Revision Project (WW2020-007-T).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LFQ, CLK; Methodology: CLK, WWW; Validation: CJF; Formal analysis: LFQ; Data curation: LFQ, WWW; Investigation: WWW; Resources: ZH, WLM; Writing—original draft preparation: LFQ, CJF; Writing—review and editing: YY; Visualization: LFQ; Supervision: CLK, YY; Project administration: CLK, ZH.

Corresponding author

Correspondence to Ying Yan.

Ethics declarations

Conflict of interest

The authors declare that no conflicts of interest or personal relationships may affect this work.

Ethical approval

This declaration is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, F., Cai, L., Cai, J. et al. Real-time detection of organic acid gases by QCM sensor based on acidified MWCNTs/PANI nanocomposites. Res Chem Intermed 49, 3893–3907 (2023). https://doi.org/10.1007/s11164-023-05054-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05054-y

Keywords

Navigation