Skip to main content
Log in

High Performance CO Gas Sensor Based on ZnO Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Carbon monoxide sensor was fabricated using ZnO nanoparticles, synthesized by sol–gel technique, as sensing layer. The morphology and structure of the prepared nanopowder were analyzed using X-ray diffraction (XRD), scanning and transmission electron microscopies (SEM and TEM). Photoluminescence (PL) measurements were carried to investigate the defects in ZnO. The sensing tests were performed by a homemade setup. XRD pattern indicate that the prepared ZnO nanopowder has a crystallite size average around 50 nm. TEM and SEM images reveal that the ZnO nanopowder is formed of agglomeration of spherical particles with a size of 50 nm which is in good agreement with XRD analysis. The prepared gas sensor exhibits a response of 74% towards 80 ppm of CO gas with a response/recovery times of 21 and 70 s, respectively at 250 °C and high stability with time. The good sensing properties of ZnO nanoparticles towards CO gas indicate their potential application for the fabrication of low power and highly selective sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Z.D. Lin, W.L. Song, H.M. Yang, Sens. Actuators B 173, 22–27 (2012)

    CAS  Google Scholar 

  2. P. Sun, W.N. Wang, Y.P. Liu, Y.F. Sun, J. Ma, G.Y. Lu, Sens. Actuators B 173, 52–57 (2012)

    CAS  Google Scholar 

  3. H. Kim, C. Jin, S. Park, S. Kim, C. Lee, Sens. Actuators B 161, 594–599 (2012)

    CAS  Google Scholar 

  4. P.M. Perillo, D.F. Rodríguez, Sens. Actuators B 171–172, 639–643 (2012)

    Google Scholar 

  5. C. Baban, Y. Toyoda, M. Ogita, J. Optoelectron. Adv. Mater. 7, 891–896 (2005)

    CAS  Google Scholar 

  6. J.J. Hassana, M.A. Mahdia, C.W. China, H. Abu-Hassan, Z. Hassan, Sens. Actuators B 176, 360–367 (2013)

    Google Scholar 

  7. P. Singh, V.N. Singh, K. Jain, T.D. Senguttuvan, Sens. Actuators B 166–167, 678–684 (2012)

    Google Scholar 

  8. K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, Phys. B 537, 167–175 (2018)

    CAS  Google Scholar 

  9. K. Omri, A. Alyamani, L. El Mir, J. Mater. Sci. 30, 16606–16612 (2019)

    CAS  Google Scholar 

  10. K. Omri, I. Najeh, L. El Mir, Ceram. Int. 42, 8940–8948 (2016)

    CAS  Google Scholar 

  11. R.N. Viswanath, S. Ramasamy, R. Ramamoorthy, P. Jayavel, T. Nagarajan, Nanostruct. Mater. 6, 993–996 (1995)

    Google Scholar 

  12. M.S. Wu, A. Azuma, T. Shiosaki, A. Kawabata, I.E.E.E. Trans, Ultrason. Ferroelec. Freq. Contr. 136, 442–445 (1989)

    Google Scholar 

  13. M.K. Jayaraj, A. Antony, M. Ramachandran, Bull. Mater. Sci. 25, 227–230 (2002)

    CAS  Google Scholar 

  14. K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo, H. Siegbahn, J. Photochem. Photobiol. A 148, 57–64 (2002)

    CAS  Google Scholar 

  15. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H. Choi, Adv. Funct. Mater. 12, 323–331 (2002)

    CAS  Google Scholar 

  16. S. Roy, S. Basu, Bull. Mater. Sci. 25, 513–515 (2002)

    CAS  Google Scholar 

  17. A.R. Raju, C.N.R. Rao, Sens. Actuators B 3, 305–310 (1991)

    CAS  Google Scholar 

  18. L. El Mir, Z. Ben Ayadi, M. Saadoun, H.J. Von Bardeleben, K. Djessas, A. Zeinert, Phys. Status Solidi (a) 204, 3266–3277 (2007)

    Google Scholar 

  19. T. Yamazaki, S. Wada, T. Noma, T. Suzuki, Sens. Actuators B 13–14, 594–595 (1993)

    Google Scholar 

  20. M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Sens. Actuators B 196, 413–420 (2014)

    CAS  Google Scholar 

  21. E. Pál, V. Hornok, R. Kun, A. Oszkó, T. Seemann, I. Dékány, M. Busse, J. Colloid Interface Sci. 378, 100–109 (2012)

    PubMed  Google Scholar 

  22. S. Nundy, T. Eom, J. Kang, J. Suh, M. Cho, J.S. Park, H.J. Lee, Ceram. Int. 46, 5706–5714 (2020)

    CAS  Google Scholar 

  23. S.K. Shaikh, V.V. Ganbavale, S.V. Mohite, U.M. Patil, K.Y. Rajpure, Superlattices Microstruct. 120, 170–186 (2018)

    CAS  Google Scholar 

  24. S. Kanaparthi, S.G. Singh, Mater. Sci. Energy Technol. 3, 91–96 (2020)

    Google Scholar 

  25. J.H. Kim, A. Mirzaei, H.W. Kim, P. Wu, S.S. Kim, Sens. Actuators B 293, 210–223 (2019)

    CAS  Google Scholar 

  26. J. Singh, S. Sharma, S. Soni, S. Sharma, R. Chand Singh, Mater. Sci. Semicond. Process. 98, 29–38 (2019)

    CAS  Google Scholar 

  27. P. Shunmuga Sundaram, S. Stephen Rajkumar Inbanathan, G. Arivazhagan, Phys. B 574, 411668 (2019)

    CAS  Google Scholar 

  28. M. Hjiri, R. Dhahri, L. El Mir, A. Bonavita, N. Donato, S.G. Leonardi, G. Neri, J. Alloys, Compounds 634, 187–192 (2015)

    CAS  Google Scholar 

  29. J.L. Yu, Y.F. Lai, S.Y. Cheng, Q. Zheng, Y.H. Chen, J. Lumin. 161, 330–334 (2015)

    CAS  Google Scholar 

  30. J. Lv, M. Fang, Mater. Lett. 218, 18–21 (2018)

    CAS  Google Scholar 

  31. S. Pal, A. Sarkar, P. Kumar, D. Kanjilal, T. Rakshit, S.K. Ray, D. Jana, J. Lumin. 169, 326–333 (2016)

    CAS  Google Scholar 

  32. J.D. McNamara, N.M. Albarakati, M.A. Reshchikov, J. Lumin. 178, 301–306 (2016)

    CAS  Google Scholar 

  33. J. Wang, S. Yu, H. Zhang, Optik 180, 20–26 (2019)

    CAS  Google Scholar 

  34. C. Wende, W. Ping, Z. Xingquan, X. Tan, J. Appl. Phys. 100, 5 (2006)

    Google Scholar 

  35. T.M. Børsetha, B.G. Svensson, A.Y. Kuznetsov, Appl. Phys. Lett. 89, 26 (2006)

    Google Scholar 

  36. K. Ravichandran, A. Anbazhagan, M. Baneto, N. Dineshbabu, C. Ravidhas, G. Muruganandam, Mater. Sci. Semicond. Process. 41, 150–154 (2016)

    CAS  Google Scholar 

  37. P. Murkute, H. Ghadi, S. Saha, S.K. Pandey, S. Chakrabarti, Mater. Sci. Semicond. Process. 66, 1–8 (2017)

    CAS  Google Scholar 

  38. P.U. Londhe, N.B. Chaure, Mater. Sci. Semicond. Process. 60, 5–15 (2017)

    CAS  Google Scholar 

  39. G. Neri, A. Bonavita, G. Micali, G. Rizzo, E. Callone, G. Carturan, Sens. Actuators B 132, 224–233 (2008)

    CAS  Google Scholar 

  40. L. El Mir, J. El Ghoul, S. Alaya, M. Ben Salem, C. Barthou, H.J. von Bardeleben, Phys. B 403, 1770–1774 (2008)

    Google Scholar 

  41. Y. Chen, D.M. Bagnall, H.K. Koh, K.T. Park, K. Hiraga, Z.Q. Zhu, T. Yao, J. Appl. Phys. 84, 3912 (1998)

    CAS  Google Scholar 

  42. Y. Chem, D.M. Bagnall, H.K. Koh, K.T. Park, K. Hiraga, Z.Q. Zhu, T. Yao, J. Appl. Phys. 84, 3912 (1998)

    Google Scholar 

  43. V.A. Fonoberov, K.A. Alim, A.A. Balandin, F. Xiu, J. Liu, Phys. Rev. B 73, 165317–165326 (2006)

    Google Scholar 

  44. D.R. Lide, Handbook of Chemistry and Physics (CRC Press, Florida, 1992), pp. 4–163

    Google Scholar 

  45. H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, F.R. Zhu, Sens. Actuators B 115, 247–251 (2006)

    CAS  Google Scholar 

  46. B.T. Raut, P.R. Godse, S.G. Pawar, M.A. Chougule, B. Patil, J. Mater. Sci. 23, 956–963 (2012)

    CAS  Google Scholar 

  47. L.E. Mathevulaa, L.L. Notoa, B.M. Mothudia, M. Chithambo, M.S. Dhlamini, J. Lumines. 192, 879–887 (2017)

    Google Scholar 

  48. M. Hjiri, L. El Mir, S.G. Leonardi, N. Donato, G. Neri, Nanomaterials 3, 357–369 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. S. Rasouli Jamnani, H. Milani Moghaddam, S.G. Leonardi, N. Donato, G. Neri, Appl. Surf. Sci. 487, 793–900 (2019)

    CAS  Google Scholar 

  50. K.-C. Hsu, T.-H. Fang, Y.-J. Hsiao, P.-C. Wu, J. Alloy. Compd. 794, 576–584 (2019)

    CAS  Google Scholar 

  51. J.-C. Ding, H.-Y. Li, T.-C. Cao, Z.-X. Cai, X.-X. Wang, X. Guo, Solid State Ionics 303, 97–102 (2017)

    CAS  Google Scholar 

  52. R. Molavi, M.H. Sheikhi, Mater. Sci. Semicond. Proc. 106, 104767 (2020)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hjiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hjiri, M., Bahanan, F., Aida, M.S. et al. High Performance CO Gas Sensor Based on ZnO Nanoparticles. J Inorg Organomet Polym 30, 4063–4071 (2020). https://doi.org/10.1007/s10904-020-01553-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01553-2

Keywords

Navigation