Skip to main content

Advertisement

Log in

Nonthermal plasma catalysis using ferrites as an efficient catalyst for toluene degradation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Volatile organic compounds (VOCs) are a major class of pollutants that are hazardous to human health and environment. An emerging and successful technology for the treatment of VOC, even at low concentrations is nonthermal plasma (NTP). However, it has the disadvantages of generating undesired by-products and is less energy efficient. In this work, the NTP is combined with ferrite-based catalysts Co–Zn–Fe2O4, Co–Fe2O4, and Zn–Fe2O4 are prepared by the coprecipitation method to study the impact of input power (11–44 W), CO2 selectivity, NOx, O3, and undesired by-product generation for the degradation of toluene as representing VOC. The NTP with catalysts significantly improves the removal efficiency of toluene and suppresses by-product formation. Particularly, Co–Fe2O4 showed the highest toluene removal efficiency than Co–Zn–Fe2O4, Zn–Fe2O4, and NTP-alone. Moreover, the Co–Fe2O4 catalyst gives 66.66% higher removal efficiency of toluene than NTP-alone and reduces the generation of organic by-products. This is due to the adsorptive nature of the active sites of catalyst that prolongs residence intervals of VOCs to interact with high-energy electrons and active radicals from the plasma discharge zone. This study reveals that NTP incorporated with a catalytic system to convert VOC is truly sustainable and has great potential for future development.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Raza, S. Saeed, H. Saulat, H. Gul, M. Sarfraz, C. Sonne, Z. Sohn, R.J.C. Brown, K. Kim, J. Clean. Prod. 279, 123676 (2021)

    Article  CAS  Google Scholar 

  2. J. Yu, A. Caravaca, C. Guillard, P. Vernoux, L. Zhou, L. Wang, J. Lei, J. Zhang, Y. Liu, Catalysts 11, 1 (2021)

    Google Scholar 

  3. Y. Luo, G. Sun, B. Tian, J. Zhang, Chem. Eng. J. 442, 135835 (2022)

    Article  CAS  Google Scholar 

  4. Y. Nie, X. Tang, W. Cai, J. Li, Chemosphere 303, 135814 (2022)

    Article  Google Scholar 

  5. X. Zhu, H. Xiong, J. Liu, Y. Gan, Z. Xu, C. Zhou, Y. Wang, J. Energy Inst. 103, 138 (2022)

  6. B. Lou, N. Shakoor, M. Adeel, P. Zhang, L. Huang, Y. Zhao, W. Zhao, Y. Jiang, Y. Rui, J. Clean. Prod. 363 (2022)

  7. Z. Zhang, Z. Jiang, W. Shangguan, Catal. Today 264, 270 (2016)

    Article  CAS  Google Scholar 

  8. M. Ansari, A. Hossein Mahvi, M. Hossein Salmani, M. Sharifian, H. Fallahzadeh, M. Hassan Ehrampoush, Sep. Purif. Technol. 251, 11720 (2020)

    Article  Google Scholar 

  9. D. Śmiłowicz, F. Kogelheide, A.L. Schöne, K. Stapelmann, P. Awakowicz, N. Metzler-Nolte, Sci. Rep. 10, 1 (2020)

    Article  Google Scholar 

  10. H. Yi, X. Yang, X. Tang, S. Zhao, X. Xie, T. Feng, Y. Ma, X. Cui, Energy Fuels 31, 11217 (2017)

    Article  CAS  Google Scholar 

  11. S.K.P. Veerapandian, Z. Ye, J.M. Giraudon, N. De Geyter, R. Morent, J.F. Lamonier, J. Hazard. Mater. 379, 120781 (2019)

    Article  CAS  PubMed  Google Scholar 

  12. B. Lu, X. Zhang, X. Yu, T. Feng, S. Yao, J. Hazard. Mater. 137, 633 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. A.M. Carrillo, J.G. Carriazo, Appl. Catal. B Environ. 164, 443 (2015)

    Article  CAS  Google Scholar 

  14. T. Chang, J. Lu, Z. Shen, B. Zhang, Y. Huang, J. Cao, H. Liu, S.K.P. Veerapandian, N. De Geyter, R. Morent, Ind. Eng. Chem. Res. 58, 14719 (2019)

    Article  CAS  Google Scholar 

  15. K.S. Ayub, W.Q. Zaman, W. Miran, M. Ali, Z. Abbas, U. Mushtaq, A. Shahzad, J. Yang, Res. Chem. Intermed. 48, 4227 (2022)

    Article  CAS  Google Scholar 

  16. Z. Abbas, K.S. Ayub, W.Q. Zaman, A. Shan, A. Idrees, H. Khalid, M.U. Mushtaq, S. Abbas, L. Cao, J. Yang, Res. Chem. Intermed. (2022)

  17. Z. Abbas, W.Q. Zaman, M. Danish, A. Shan, C. Ma, K.S. Ayub, M. Tariq, Q. Shen, L. Cao, J. Yang, Res. Chem. Intermed. 47, 2407 (2021)

    Article  CAS  Google Scholar 

  18. J. Liu, Y. Ji, S. Zhu, T. Guo, L. Xu, J. Dong, P. Cheng, Environ. Sci. Pollut. Res. 29, 2480 (2022)

    Article  CAS  Google Scholar 

  19. P. Panda, R.K. Mahanta, S. Mohanty, R. Paikaray, S.P. Das, Environ. Sci. Pollut. Res. 28, 28666 (2021)

    Article  CAS  Google Scholar 

  20. Y. Lyu, C. Li, X. Du, Y. Zhu, Y. Zhang, S. Li, Environ. Sci. Pollut. Res. 27, 2482 (2020)

    Article  CAS  Google Scholar 

  21. K.L. Pan, M.B. Chang, Environ. Sci. Pollut. Res. 26, 12948 (2019)

    Article  CAS  Google Scholar 

  22. B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Int. J. Mol. Sci. 14, 21266 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M.A. Munir, M.Y. Naz, S. Shukrullah, M.T. Ansar, M.U. Farooq, M. Irfan, S.N.F. Mursal, S. Legutko, J. Petrů, M. Pagáč, Materials (Basel). 15, 1 (2022)

    Article  Google Scholar 

  24. X. Han, H. Zhang, T. Chen, M. Zhang, M. Guo, J. Mol. Liq. 272, 43 (2018)

    Article  CAS  Google Scholar 

  25. M. Liang, W. Kang, K. Xie, J. Nat. Gas Chem. 18, 110 (2009)

    Article  CAS  Google Scholar 

  26. F. Azad, C. Luo, S. Su, M. Younas, W. Azeem, A. Kuznetsov, A. Azarov, K. Shih, C. Liao, A. Maqsood, F.C.C. Ling, J. Appl. Phys. 121, 252102 (2017)

    Article  Google Scholar 

  27. H. Tariq, F. Azad, J. Nanomater. 2022 (2022)

  28. J. Yang, S. Liu, T. He, L.C. Nengzi, Y. Wang, L. Su, J. Cao, L. Ji, C. Yuan, M. Geng, J. Environ. Chem. Eng. 9, 106361 (2021)

    Article  CAS  Google Scholar 

  29. M.F. Mustafa, X. Fu, Y. Liu, Y. Abbas, H. Wang, W. Lu, J. Hazard. Mater. 347, 317 (2018)

    Article  CAS  PubMed  Google Scholar 

  30. T. Chang, Z. Shen, Y. Huang, J. Lu, D. Ren, J. Sun, J. Cao, Chem. Eng. J. 348, 15 (2018)

    Article  CAS  Google Scholar 

  31. W.J. Liang, L. Ma, H. Liu, J. Li, Chemosphere 92, 1390 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. M. Magureanu, N.B. Mandache, E. Gaigneaux, C. Paun, V.I. Parvulescu, J. Appl. Phys. 99, 7 (2006)

    Article  Google Scholar 

  33. B. Wang, X. Xu, W. Xu, N. Wang, H. Xiao, Y. Sun, H. Huang, L. Yu, M. Fu, J. Wu, L. Chen, D. Ye, Catal. Surv. From Asia 22, 73 (2018)

    Article  CAS  Google Scholar 

  34. J. Karuppiah, E. Linga Reddy, P. Manoj Kumar Reddy, B. Ramaraju, C. Subrahmanyam, Int. J. Environ. Sci. Technol. 11, 311 (2014)

    Article  CAS  Google Scholar 

  35. Y. Luo, Z. Chi, J. Zhang, B. Tian, ChemCatChem 14, 1 (2022)

    Google Scholar 

  36. J.S. Youn, J. Bae, S. Park, Y.K. Park, Catal. Commun. 113, 36 (2018)

    Article  CAS  Google Scholar 

  37. T. Garcia, S. Agouram, J.F. Sánchez-Royo, R. Murillo, A.M. Mastral, A. Aranda, I. Vázquez, A. Dejoz, B. Solsona, Appl. Catal. A Gen. 386, 16 (2010)

    Article  CAS  Google Scholar 

  38. F. Holzer, F.D. Kopinke, U. Roland, Plasma Chem. Plasma Process. 25, 595 (2005)

    Article  CAS  Google Scholar 

  39. Y. Zhang, H.Y. Wang, Y.R. Zhang, A. Bogaerts, Plasma Sources Sci. Technol. 26, 054002 (2017)

    Article  Google Scholar 

  40. X. Yao, Y. Li, Z. Fan, Z. Zhang, M. Chen, W. Shangguan, Ind. Eng. Chem. Res. 57, 4214 (2018)

    Article  CAS  Google Scholar 

  41. H. Song, F. Hu, Y. Peng, K. Li, S. Bai, J. Li, Chem. Eng. J. 347, 447 (2018)

    Article  CAS  Google Scholar 

  42. X. Li, S. Wang, X. Zhang, D. Mei, Y. Xu, P. Yu, Y. Sun, J. Clean. Prod. 332 (2022)

  43. X. Zhang, B. Ren, Y. Xu, X. Li, P. Yu, Y. Sun, H. Zheng, Sep. Purif. Technol. 257, 117973 (2021)

  44. Y. Li, Z. Fan, J. Shi, Z. Liu, W. Shangguan, Chem. Eng. J. 241, 251 (2014)

    Article  CAS  Google Scholar 

  45. P. Talebizadeh, M. Babaie, R. Brown, H. Rahimzadeh, Z. Ristovski, M. Arai, Renew. Sustain. Energy Rev. 40, 886 (2014)

    Article  CAS  Google Scholar 

  46. J.H. Byeon, J.H. Park, Y.S. Jo, K.Y. Yoon, J. Hwang, J. Hazard. Mater. 175, 417 (2010)

    Article  CAS  PubMed  Google Scholar 

  47. M.F. Mustafa, X. Fu, W. Lu, Y. Liu, Y. Abbas, H. Wang, M.T. Arslan, J. Clean. Prod. 174, 670 (2018)

    Article  CAS  Google Scholar 

  48. H. Jiang, X. Xu, R. Zhang, Y. Zhang, J. Chen, F. Yang, RSC Adv. 10, 5116 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. M. Li, Q. Gao, T. Wang, Y.S. Gong, B. Han, K.S. Xia, C.G. Zhou, Mater. Des. 97, 341 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is based on the work supported by the National Natural Science Foundation of China (51778229).

Funding

Ji Yang reports financial support was provided by the National Natural Science Foundation of China (51778229).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. KSA and ZA gave concept, designed and conducted the experimental work, and investigated and wrote the paper under the supervision of YJ. WQZ, SR, M MA, and W helped to analyze the nonthermal plasma, characterization data, and conceptualization. Umair Mushtaq and Haroon Khalid analyzed experimental data. The manuscript was revised through discussion and comments of all the authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ji Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

The data analyzed can be accessed from the manuscript for the current study.

Financial interests

Authors have no relevant financial and nonfinancial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayub, K.S., Abbas, Z., Zaman, W.Q. et al. Nonthermal plasma catalysis using ferrites as an efficient catalyst for toluene degradation. Res Chem Intermed 49, 2399–2415 (2023). https://doi.org/10.1007/s11164-023-05010-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05010-w

Keywords

Navigation