Skip to main content
Log in

Development of visible light-responsive N-doped TiO2/SiO2 core–shell nanoparticles for photocatalytic degradation of methylene blue dye

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A visible-light responsive Nitrogen-doped TiO2 photocatalyst (NT) is a promising photocatalyst for environmental applications. This study aimed to synthesize N-doped TiO2/SiO2 (NT/SiO2) core/shell nanoparticles and investigate the effect of SiO2 on the photocatalytic reactivity of NT. The NT photocatalyst was prepared by the solvothermal method, while the NT/SiO2 core/shell photocatalysts were prepared by the sol–gel method with and without the use of cetyltrimethylammonium bromide (CTAB) as a directing agent. The photocatalytic reactivity of the NT/SiO2 core/shell photocatalysts was examined by methylene blue (MB) photodegradation under light-emitting diode visible light irradiation. Transmission electron microscope images indicated the core/shell structure, in which NT was a core and mesoporous SiO2 was a shell. The bonding of NT and SiO2 was examined by X-ray Photoelectron Spectroscopy. Interestingly, using CTAB caused a decrease in the photocatalytic performance of NT/SiO2 due to the aggregation of NT particles. The results of MB photodegradation indicated that the NT/SiO2 core/shell catalysts (without CTAB) had higher MB photodegradation efficiency (72%) than that of the NT/CTAB/SiO2 core/shell catalysts (60%), and bare NT (30%), respectively. The role of the mesoporous SiO2 shell was not only to increase the specific surface area but also to decrease the recombination rate of photogenerated electrons and holes in the NT/SiO2 core/shell photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The datasets generated during the current study are available from the corresponding author upon reasonable request.

References

  1. C. Huang, H. Bai, Y. Huang, S. Liu, S. Yen, Y. Tseng, Int. J. Photoenergy (2012)

  2. M. Zhang, L. E, R. Zhang, Z. Liu, Surf. Interfaces. 16 (2019)

  3. Q. Jiang, J. Huang, B. Ma, Z. Yang, T. Zhang, X. Wang, Colloids. Surf. A 602 (2020)

  4. D.S.S. Padovini, A.G. Magdalena, R.G. Capeli, E. Longo, C.J. Dalmaschio, A.J. Chiquito, F.M. Pontes, Mater. Chem. Phys. 233 (2019)

  5. S. Kamaruddin, D. Stephan, Catal. Today 161, 1 (2011)

    Article  Google Scholar 

  6. X. Wang, H. Chen, Colloids. Surf. A 485 (2015)

  7. Y. Ren, M. Chen, Y. Zhang, L. Wu, Langmuir 26, 13 (2010)

    CAS  Google Scholar 

  8. P. Nadrah, M. Gaberšček, A. Sever Škapin, Appl. Surf. Sci 405 (2017)

  9. I. Fatimah, N.I. Prakoso, I. Sahroni, M.M. Musawwa, Y.L. Sim, F. Kooli, O. Muraza, Heliyon 5, 11 (2019)

    Article  Google Scholar 

  10. D. Wang, Z. Geng, P. Hou, P. Yang, X. Cheng, S. Huang, Crystals 10, 2 (2020)

    Google Scholar 

  11. J. Sun, K. Xu, C. Shi, J. Ma, W. Li, X. Shen, Constr. Build. Mater. 156 (2017)

  12. N. Kovalevskiy, D. Selishchev, D. Svintsitskiy, S. Selishcheva, A. Berezin, D. Kozlov, Catal. Commun. 134 (2020)

  13. H.J. Jung, S.H. Kye, H.J. Kang, H.J. Yang, J.B. Yoo, K.H. Lee, N.H. Hur, Appl. Catal. A 558 (2018)

  14. A. Sirivallop, T. Areerob, S. Chiarakorn, Catalysts 10, 2 (2020)

    Article  Google Scholar 

  15. B.N. Cardoso, E.C. Kohlrausch, M.T. Laranjo, E.V. Benvenutti, N.M. Balzaretti, L.T. Arenas, M.J. Santos, T.M. Costa, Int. J. Photoenergy 2019 (2019)

  16. A. Datta, S. Dasgupta, S. Mukherjee, J. Nanopart. Res 19, 4 (2019)

    Google Scholar 

  17. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Pure. Appl. Chem 87, 9–10 (2015)

    Article  Google Scholar 

  18. H.A. Budiarti, R.N. Puspitasari, A.M. Hatta, D.D. Risanti, Proc. Eng. 170 (2017)

  19. M. Hu, Y. Cao, Z. Li, S. Yang, Z. Xing, Appl. Surf. Sci. 426 (2017)

  20. V.B. Koli, S.D. Delekar, S.H. Pawar, J. Mater. Sci. Mater. Med. 27, 12 (2016)

    Google Scholar 

  21. V.P. Barba, B. Selvaratnam, P. Thangarasu, R.T. Koodali, J. Nanopart. Res. 23, 1 (2021)

    Article  Google Scholar 

  22. S. Sun, H. Ding, J. Wang, W. Li, Q. Hao, Ceram. Int. 46, 14 (2020)

    Google Scholar 

  23. H. Zhang, X. Luo, J. Xu, B. Xiang, D. Yu, J. Phys. Chem. B 108, 39 (2004)

    Article  Google Scholar 

  24. Y. Chen, X. Tang, X. Gao, B. Zhang, Y. Luo, X. Yao, Ceram. Int. 45, 12 (2019)

    Google Scholar 

  25. V.B. Koli, S. Mavengere, J.S. Kim, Appl. Surf. Sci. 491 (2019)

  26. H. Wang, Y. Hu, Int. J. Photoenergy (2013)

  27. M. Miyauchi, A. Ikezawa, H. Tobimatsu, H. Irie, K. Hashimoto, Phys. Chem. Chem. Phys. 6, 4 (2004)

    Article  Google Scholar 

  28. X. Cheng, X. Yu, Z. Xing, L. Yang, Arabian J. Chem. 9 (2016)

  29. T. Xu, M. Wang, T. Wang, J. Wuhan. Univ. Technol. Mater. Sci. Ed 34, 1 (2019)

    Article  Google Scholar 

  30. Y. Cong, L. Xiao, J. Zhang, F. Chen, M. Anpo, Res. Chem. Intermed. 32, 8 (2006)

    Article  Google Scholar 

  31. Y. Cong, J. Zhang, F. Chen, M. Anpo, J. Phys. Chem. C 111, 19 (2007)

    Google Scholar 

  32. M. Kitano, K. Funatsu, M. Matsuoka, M. Ueshima, M. Anpo, J. Phys. Chem. C 110, 50 (2006)

    Article  Google Scholar 

  33. S. Higashimoto, K. Takamatsu, M. Azuma, M. Kitano, M. Matsuoka, M. Anpo, Catal. Lett 122, 1 (2008)

    Article  Google Scholar 

  34. T.Y. Lee, C.Y. Lee, H.T. Chiu, ACS Omega 3, 8 (2018)

    Article  Google Scholar 

  35. R.P. Barkul, V.B. Koli, V.B. Shewale, M.K. Patil, S.D. Delekar, Mater. Chem. Phys. 173 (2016)

  36. T. Gholami, M. Bazarganipour, M. Salavati-Niasari, S. Bagheri, J. Mater. Sci. Mater. Electron. 26, 8 (2015)

    Article  Google Scholar 

  37. P. Klankaw, C. Chawengkijwanich, N. Grisdanurak, S. Chiarakorn, Superlattices. Microstruct. 51, 3 (2012)

    Article  Google Scholar 

  38. S. Nabih, A.E. Shalan, E.S.A. Serea, M.A. Goda, M.F. Sanad, J. Mater. Sci.: Mater. Electron. 30, 10 (2019)

    Google Scholar 

  39. C.G. Joseph, Y.H. Taufiq-Yap, B. Musta, M.S. Sarjadi, L. Elilarasi, Front. Chem. 8 (2021)

  40. T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, N. Serpone, J. Photochem. Photobiol. A 140, 2 (2001)

    Article  Google Scholar 

  41. X. Zhang, Y. Hui, C. Fang, Y. Wang, F. Han, X. Lou, E.K. Fodjo, Y. Cai, C. Kong, Mol 26, 16 (2021)

    Google Scholar 

  42. S. Hu, F. Li, Z. Fan, Bull. Korean Chem. Soc 33, 6 (2012)

    Google Scholar 

  43. H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M.A. Fox, C. Louis, M. Che, J. Phys. Chem. B 102, 30 (1998)

    Google Scholar 

  44. M. Takeuchi, S. Dohshi, T. Eura, M. Anpo, J. Phys. Chem. B 107, 5 (2003)

    Article  Google Scholar 

  45. L. Zhou, S. Yan, B. Tian, J. Zhang, M. Anpo, Mater. Lett 60, 30 (2006)

    Google Scholar 

Download references

Funding

This study was supported by the Research and Researcher for Industries (RRI) scholarship from Thailand Research Fund (TRF) under grant number PHD61I0007, the Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Centre of Excellence on Energy Technology and Environment, PERDO, Thailand, and Thailand Science Research and Innovation (TSRI) Basic Research Fund: The fiscal year 2022 under project number FRB650048/0164.

Author information

Authors and Affiliations

Authors

Contributions

SC was in charge of a research supervisor and acted as a corresponding author. TA was responsible for the data validation. SS was responsible for conducting the experiments and preparing the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to S. Chiarakorn.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

This article does not contain any studies involving human participants and animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samangsri, S., Areerob, T. & Chiarakorn, S. Development of visible light-responsive N-doped TiO2/SiO2 core–shell nanoparticles for photocatalytic degradation of methylene blue dye. Res Chem Intermed 49, 1649–1664 (2023). https://doi.org/10.1007/s11164-022-04925-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04925-0

Keywords

Navigation