Skip to main content
Log in

Photocatalytic Degradation Mechanism of the Visible-Light Responsive BiVO4/TiO2 Core–Shell Heterojunction Photocatalyst

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The visible-light responsive BiVO4/TiO2 core–shell heterojunction photocatalyst was prepared by precipitation method. The crystal structure and optical properties of the samples were characterized. The XRD results indicated that the vector was anatase TiO2. EDS, XPS and XRD showed that BiVO4 was coated on the surface of TiO2. SPV and UV–Vis spectra certified that the BiVO4/TiO2 photocatalyst possessed better absorption in the visible-light region (425–470 nm). The optical band gap of BiVO4/TiO2 photocatalyst ranged from 2.38 to 2.14 eV and decreased with the BiVO4 amount increase from 2 to 6 mmol L−1. Compared to TiO2, the BiVO4/TiO2 photocatalyst exhibited much higher photocatalytic activity in degradation of methyl orange under visible light irradiation and lower photocatalytic activity in UV-light. Moreover, the effect of the different in formation mechanism of TiO2/BiVO4 and BiVO4/TiO2 on the photocatalytic activity was investigated in detail. The photocatalytic mechanism of BiVO4/TiO2 core–shell structure was discussed, which indicated that photoelectron reduction was the major degradation mechanism in this system. When TiO2 particles were properly coated with BiVO4 layer and the Bi/Ti molar ratio of 1:32, the composite photocatalyst could absorb UV-light and visible light at the same time, so the BiVO4/TiO2 core–shell heterojunction photocatalyst had the optimal photocatalytic activity in visible light irradiation, which was attributed to the spatial transfer of visible-excited high-energy electrons from TiO2 to BiVO4.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Kaplan, B. Erjavec, G. Dražić, J. Grdadolnik, A. Pintar, Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants. Appl. Catal. B 181, 465–474 (2016). https://doi.org/10.1016/j.apcatb.2015.08.027

    Article  CAS  Google Scholar 

  2. D. Zhang, G. Li, H. Wang, K.M. Chan, J.C. Yu, Biocompatible anatase single-crystal photocatalysts with tunable percentage of reactive facets. Cryst. Growth Des. 10, 1130–1137 (2015). https://doi.org/10.1021/cg900961k

    Article  CAS  Google Scholar 

  3. H. Li, L. Zhu, C. Ma, H. Zhang, TiO2 hollow microspheres: synthesis, photocatalytic activity, and selectivity for a mixture of organic dyes. Monatsh. Chem. 145, 29–37 (2014). https://doi.org/10.1007/s00706-013-1012-9

    Article  CAS  Google Scholar 

  4. G. Li, H. Zhang, J. Lan, J. Li, Q. Chen, J. Liu, G. Jiang, Hierarchical hollow TiO2 spheres: facile synthesis and improved visible-light photocatalytic activity. Dalton Trans. 42, 8541–8544 (2013). https://doi.org/10.1039/c3dt50503k

    Article  CAS  PubMed  Google Scholar 

  5. P. Zhang, A. Li, J. Gong, Hollow spherical titanium dioxide nanoparticles for energy and environmental applications. Particuology 22, 13–23 (2015). https://doi.org/10.1016/j.partic.2015.03.001

    Article  CAS  Google Scholar 

  6. C. Zhang, Y. Zhou, Y. Zhang, S. Zhao, J. Fang, X. Sheng, T. Zhang, H. Zhang, Double-shelled TiO2 hollow spheres assembled with TiO2 nanosheets. Chem. Eur. J. 23, 4336–4343 (2017). https://doi.org/10.1002/chem.201602654

    Article  CAS  PubMed  Google Scholar 

  7. M.A.M. Adnan, N.M. Julkapli, S.B.A. Hamid, Review on ZnO hybrid photocatalyst: impact on photocatalytic activities of water pollutant degradation. Rev. Inorg. Chem. 36, 77–104 (2016). https://doi.org/10.1515/revic-2015-0015

    Article  CAS  Google Scholar 

  8. C. Sushma, S.G. Kumar, Advancements in the zinc oxide nanomaterials for efficient photocatalysis. Chem. Pap. 71, 2023–2042 (2017). https://doi.org/10.1007/s11696-017-0217-5

    Article  CAS  Google Scholar 

  9. W.B. Cross, I.P. Parkin, Aerosol assisted chemical vapour deposition of tungsten oxide films from polyoxotungstate precursors: active photocatalysts. Chem. Commun. 14, 1696–1697 (2003). https://doi.org/10.1039/b303800a

    Article  CAS  Google Scholar 

  10. H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh, Nanostructured tungsten oxide-properties, synthesis, and applications. Adv. Funct. Mater. 21, 2175–2196 (2011). https://doi.org/10.1002/adfm.201002477

    Article  CAS  Google Scholar 

  11. M. Mohamed, W. Salleh, J. Jaafar, M. Rosmi, Z. Hir, M. Mutalib, A. Ismail, M. Tanemura, Carbon as amorphous shell and interstitial dopant in mesoporous rutile TiO2: bio-template assisted sol-gel synthesis and photocatalytic activity. Appl. Surf. Sci. 393, 46–59 (2017). https://doi.org/10.1016/j.apsusc.2016.09.145

    Article  CAS  Google Scholar 

  12. M. Mohamed, J. Jaafar, M. Zain, L. Minggu, M. Kassim, M. Rosmi, N. Alias, N. Nor, W. Salleh, M. Othman, In-depth understanding of core-shell nanoarchitecture evolution of g-C3N4@C, N co-doped anatase/rutile: efficient charge separation and enhanced visible-light photocatalytic performance. Appl. Surf. Sci. 436, 302–318 (2017). https://doi.org/10.1016/j.apsusc.2017.11.229

    Article  CAS  Google Scholar 

  13. M. Mohamed, M. Zain, L. Minggu, M. Kassim, J. Jaafar, N. Amin, Y. Ng, Revealing the role of kapok fibre as bio-template for In-situ construction of C-doped g-C3N4@C, N co-doped TiO2 core-shell heterojunction photocatalyst and its photocatalytic hydrogen production performance. Appl. Surf. Sci. 476, 205–220 (2019). https://doi.org/10.1016/j.apsusc.2019.01.080

    Article  CAS  Google Scholar 

  14. N. Rosman, W. Salleh, A. Ismail, J. Jaafar, Z. Harun, F. Aziz, M. Mohamed, B. Ohtani, M. Takashima, Photocatalytic degradation of phenol over visible light active ZnO/Ag2CO3/Ag2O nanocomposites heterojunction. J. Photochem. Photobiol. A 364, 602–612 (2018). https://doi.org/10.1016/j.jphotochem.2018.06.029

    Article  CAS  Google Scholar 

  15. A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Chem. Lett. 53, 229–230 (1998). https://doi.org/10.1023/A:1019034728816

    Article  CAS  Google Scholar 

  16. M. Long, W. Cai, Photoelectrochemical properties of BiVO4 film electrode in alkaline solution. Chin. J. Catal. 29, 881–883 (2008). https://doi.org/10.1016/S1872-2067(08)60069-8

    Article  CAS  Google Scholar 

  17. A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, J.A. Glasscock, Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrog. Energy 31, 1999–2017 (2006). https://doi.org/10.1016/j.ijhydene.2006.01.014

    Article  CAS  Google Scholar 

  18. T. Saison, N. Chemin, C. Chaneac, O. Durupthy, V. Ruaux, L. Mariey, F. Mauge, P. Beaunier, J.P. Jolivet, Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light. J. Phys. Chem. C 115, 5657–5666 (2011). https://doi.org/10.1021/jp109134z

    Article  CAS  Google Scholar 

  19. L.S. Zhang, H.L. Wang, Z.G. Chen, P.K. Wong, J.S. Liu, Bi2WO6 micro/nano-structures: synthesis, modifications and visible-light-driven photocatalytic applications. Appl. Catal. B 106, 1–13 (2011). https://doi.org/10.1016/j.apcatb.2011.05.008

    Article  CAS  Google Scholar 

  20. T. George, S. Joseph, A.T. Sunny, S. Mathew, Visible-light photocatalytic activities of alpha-AgVO3 nanorods and BiVO4 nanobars. Int. J. Nanotechnol. 8, 963–978 (2011). https://doi.org/10.1504/IJNT.2011.044440

    Article  CAS  Google Scholar 

  21. A. Iwase, A. Kudo, Photoelectrochemical water splitting using visible-light-responsive BiVO4 fine particles prepared in an aqueous acetic acid solution. J. Mater. Chem. 20, 7536–7542 (2010). https://doi.org/10.1039/c0jm00961j

    Article  CAS  Google Scholar 

  22. H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chem. Lett. 33, 1348–1349 (2004). https://doi.org/10.1246/cl.2004.1348

    Article  CAS  Google Scholar 

  23. Z.Q. Wang, W.J. Luo, S.C. Yan, J.Y. Feng, Z.Y. Zhao, Y.S. Zhu, Z.S. Li, Z.G. Zou, BiVO4 nano-leaves: mild synthesis and improved photocatalytic activity for O2 production under visible light irradiation. CrystEngComm 13, 2500–2504 (2011). https://doi.org/10.1039/C0CE00799D

    Article  CAS  Google Scholar 

  24. M. Long, W. Cai, J. Cai, B. Zhou, X. Chai, Y. Wu, Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B 38, 20211–20216 (2007). https://doi.org/10.1021/jp063441z

    Article  CAS  Google Scholar 

  25. S. Kohtani, M. Koshiko, A. Kudo, K. Tokumura, Y. Ishigaki, A. Toriba, K. Hayakawa, R. Nakagaki, Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator. Appl. Catal. B 46, 573–586 (2003). https://doi.org/10.1016/S0926-3373(03)00320-5

    Article  CAS  Google Scholar 

  26. X. Zhang, Z.H. Ai, F.L. Jia, L.Z. Zhang, X.X. Fan, Z.G. Zou, Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases. Mater. Chem. Phys. 103, 162–167 (2007). https://doi.org/10.1016/j.matchemphys.2007.02.008

    Article  CAS  Google Scholar 

  27. K. Soma, A. Iwase, A. Kudo, Enhanced activity of BiVO4 powdered photocatalyst under visible light irradiation by preparing microwave-assisted aqueous solution methods. Catal. Lett. 144, 1962–1967 (2014). https://doi.org/10.1007/s10562-014-1361-y

    Article  CAS  Google Scholar 

  28. M. Xie, X. Fu, L. Jing, P. Luan, Y. Feng, H. Fu, Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting. Adv. Energy. Mater. 4, 4–9 (2014). https://doi.org/10.1002/aenm.201300995

    Article  CAS  Google Scholar 

  29. H. Jung, Y.C. Sang, C. Shin, B.K. Min, O.S. Joo, Y.J. Hwang, Effect of the Si/TiO2/BiVO4 heterojunction on the onset potential of photocurrents for solar water oxidation. ACS Appl. Mater. Inter. 7, 5788–5796 (2015). https://doi.org/10.1021/am5086484

    Article  CAS  Google Scholar 

  30. H. Zhang, C. Cheng, Three-dimensional FTO/TiO2/BiVO4 composite inverse opals photoanode with excellent photoelectrochemical performance. ACS Energy Lett. 2, 813–821 (2017). https://doi.org/10.1021/acsenergylett.7b00060

    Article  CAS  Google Scholar 

  31. J. Bian, Y. Qu, X. Zhang, N. Sun, D. Tang, L. Jing, Dimension-matched plasmonic Au/TiO2/BiVO4 nanocomposites as efficient wide-visible-light photocatalysts to convert CO2 and mechanism insights. J. Mater. Chem. A 6, 11838–11845 (2018). https://doi.org/10.1039/C8TA02889C

    Article  CAS  Google Scholar 

  32. J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee, J. Guo, A.L. Briseno, P. Yang, TiO2/BiVO4 nanowire heterostructure photoanodes based on type II band alignment. ACS Cent. Sci. 2, 80–88 (2016). https://doi.org/10.1021/acscentsci.5b00402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. P.P. Liu, X. Liu, X.H. Huo, Y. Tang, J. Xu, H. Ju, TiO2-BiVO4 heterostructure to enhance photoelectrochemical efficiency for sensitive aptasensing. ACS Appl. Mater. Interfaces. 9, 27185–27192 (2017). https://doi.org/10.1021/acsami.7b07047

    Article  CAS  PubMed  Google Scholar 

  34. S. Obreǵon, G. Coĺon, A ternary Er3+-BiVO4/TiO2 complex heterostructure with excellent photocatalytic performance. RSC Adv. 4, 6920–6926 (2014). https://doi.org/10.1039/c3ra46603e

    Article  CAS  Google Scholar 

  35. Y. Hu, D. Li, Y. Zheng, W. Chen, Y. He, Y. Shao, X. Fu, G. Xiao, BiVO4/TiO2 nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene. Appl. Catal. B 104, 30–36 (2011). https://doi.org/10.1016/j.apcatb.2011.02.031

    Article  CAS  Google Scholar 

  36. M. Zalfani, B.V. Schueren, Z.Y. Hu, J.C. Rooke, R. Bourguiga, M. Wu, Y. Li, G.V. Tendeloo, B.L. Su, Novel 3DOM BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity. J. Mater. Chem. A 3, 21244–21256 (2015). https://doi.org/10.1039/c5ta00783f

    Article  CAS  Google Scholar 

  37. R. Wang, J. Bai, Y. Li, Q. Zeng, J. Li, B. Zhou, BiVO4/TiO2(N2) nanotubes heterojunction photoanode for highly efficient photoelectrocatalytic applications. Nano-Micro. Lett. 9, 14 (2017). https://doi.org/10.1007/s40820-016-0115-3

    Article  CAS  Google Scholar 

  38. W.J. Yin, S. Chen, J.H. Yang, X.G. Gong, Y. Yan, S.H. Wei, Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction. Appl. Phys. Lett. 96, 221901 (2010). https://doi.org/10.1063/1.3430005

    Article  CAS  Google Scholar 

  39. K. Hu, L. E, D. Zhao, C. Hu, J. Cui, L. Lai, Q. Xiong, Z. Liu, Hydrothermal synthesis of a rutile/anatase TiO2 mixed crystal from potassium titanyl oxalate: crystal structure and formation mechanism. CrystEngComm 20, 3363–3369 (2018). https://doi.org/10.1039/c8ce00330k

    Article  CAS  Google Scholar 

  40. A.L. Spek, Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7–13 (2003). https://doi.org/10.1107/S0021889802022112

    Article  CAS  Google Scholar 

  41. J. Tang, J. Ye, Correlation of crystal structures and electronic structures and photocatalytic properties of the W-containing oxides. J. Mater. Chem. 15, 4246–4251 (2005). https://doi.org/10.1039/b504818d

    Article  CAS  Google Scholar 

  42. P. Li, S. Ouyang, G. Xi, T. Kako, J. Ye, The effects of crystal structure and electronic structure on photocatalytic H2 evolution and CO2 reduction over two phases of perovskite-structured NaNbO3. J. Phys. Chem. C 116, 7621–7628 (2012). https://doi.org/10.1021/jp210106b

    Article  CAS  Google Scholar 

  43. X. Zhang, L. Zhang, T. Xie, D. Wang, Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J. Phys. Chem. C 113, 7371–7378 (2009). https://doi.org/10.1021/jp900812d

    Article  CAS  Google Scholar 

  44. F. Wang, W. Li, S. Gu, H. Li, H. Zhou, X. Wu, Novel In2S3/ZnWO4 heterojunction photocatalysts: facile synthesis and high-efficiency visible-light-driven photocatalytic activity. RSC Adv. 5, 89940–89950 (2015). https://doi.org/10.1039/c5ra16243b

    Article  CAS  Google Scholar 

  45. M. Wang, W. Li, Y. Zhao, S. Gu, F. Wang, H. Li, X. Liu, C. Ren, Synthesis of BiVO4–TiO2–BiVO4 three-layer composite photocatalyst: effect of layered heterojunction structure on the enhancement of photocatalytic activity. RSC Adv. 6, 75482–75490 (2016). https://doi.org/10.1039/c6ra16796a

    Article  CAS  Google Scholar 

  46. K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B 68, 125–129 (2006). https://doi.org/10.1016/j.apcatb.2006.08.002

    Article  CAS  Google Scholar 

  47. P. Dong, Y. Wang, B. Cao, S. Xin, L. Guo, J. Zhang, F. Li, Ag3PO4/reduced graphite oxide sheets nanocomposites with highly enhanced visible light photocatalytic activity and stability. Appl. Catal. B 132, 45–53 (2013). https://doi.org/10.1016/j.apcatb.2012.11.022

    Article  CAS  Google Scholar 

  48. L. Hoffart, U. Heider, R.A. Huggins, W. Witschel, R. Jooss, A. Lentz, Crystal growth and conductivity investigations on BiVO4 single crystals. Ionics 2, 34–38 (1996). https://doi.org/10.1007/BF02375866

    Article  CAS  Google Scholar 

  49. T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, A. Tünnermann, Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range. Adv. Opt. Mater. 4, 1780–1786 (2016). https://doi.org/10.1002/adom.201600250

    Article  CAS  Google Scholar 

  50. S. Sarkar, N.S. Das, K.K. Chattopadhyay, Optical constants, dispersion energy parameters and dielectric properties of ultra-smooth nanocrystalline BiVO4 thin films prepared by rf-magnetron sputtering. Solid State Sci. 33, 58–66 (2014). https://doi.org/10.1016/j.solidstatesciences.2014.04.008

    Article  CAS  Google Scholar 

  51. B. Wang, Z. Wan, H. Wu, S. Liu, Y. Chen, X. Sui, D. Yuan, Surface photovoltage: an efficient tool of evaluation of photocatalytical activity of materials. Adv. Mater. Res. 295–297, 614–617 (2011). https://doi.org/10.4028/www.scientific.net/AMR.295-297.614

    Article  CAS  Google Scholar 

  52. X. Qian, D. Qin, Q. Song, Y. Bai, T. Li, X. Tang, E. Wang, S. Dong, Surface photovoltage spectra and photoelectrochemical properties of semiconductor-sensitized nanostructured TiO2 electrodes. Thin Solid Films 385, 152–161 (2001). https://doi.org/10.1016/S0040-6090(01)00771-4

    Article  CAS  Google Scholar 

  53. A.B. Anderson, Derivation of the extended Hückel method with corrections: one electron molecular orbital theory for energy level and structure determinations. J. Chem. Phys. 62, 1187–1188 (1975). https://doi.org/10.1063/1.430562

    Article  CAS  Google Scholar 

  54. F. Flores, J. Ortega, H. Vázquez, Modelling energy level alignment at organic interfaces and density functional theory. Phys. Chem. Chem. Phys. 11, 8658–8675 (2009). https://doi.org/10.1039/b902492c

    Article  CAS  PubMed  Google Scholar 

  55. J. Ma, S.H. Wei, T.A. Gessert, K.K. Chin, Carrier density and compensation in semiconductors with multiple dopants and multiple transition energy levels: case of Cu impurities in CdTe. Phys. Rev. B 83, 2335–2347 (2011). https://doi.org/10.1103/PhysRevB.83.245207

    Article  CAS  Google Scholar 

  56. J.K. Cooper, S. Gul, F.M. Toma, L. Chen, P.A. Glans, J. Guo, J.W. Ager, J. Yano, I.D. Sharp, Electronic sStructure of monoclinic BiVO4. Chem. Mater. 26, 5365–5373 (2014). https://doi.org/10.1021/cm5025074

    Article  CAS  Google Scholar 

  57. G. Smith, R. Crook, J. Wadhawan, Measuring the work function of TiO2 nanotubes using illuminated electrostatic force microscopy. J. Phys. 471, 012045 (2013). https://doi.org/10.1088/1742-6596/471/1/012045

    Article  CAS  Google Scholar 

  58. Y. Huang, J. Wu, Hydrogen production from water splitting by semiconductor oxides photocatalysis. Prog. Chem. 18, 861–869 (2006). https://doi.org/10.3321/j.issn:1005-281X.2006.07.003

    Article  CAS  Google Scholar 

  59. T. Saison, N. Chemin, C. Chanéac, O. Durupthy, L. Mariey, F. Maugé, V. Brezová, J.P. Jolivet, New insights into BiVO4 properties as visible light photocatalyst. J. Phys. Chem. C 119, 12967–12977 (2015). https://doi.org/10.1021/acs.jpcc.5b01468

    Article  CAS  Google Scholar 

  60. P. Ju, Y. Wang, Y. Sun, D. Zhang, Controllable one-pot synthesis of a nest-like Bi2WO6/BiVO4 composite with enhanced photocatalytic antifouling performance under visible light irradiation. Dalton Trans. 45, 4588–4602 (2016). https://doi.org/10.1039/c6dt00118a

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support received from the Tianjin Natural Science Foundation (Grant No. 18JCYBJC87600) and the Key Projects of Tianjin Natural Science Foundation (Grant No. 16JCZDJC39100). The authors are indebted to Prof. L. Ge for his technical assistance in surface photovoltage spectroscopy (SPV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei E.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 972 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, K., E, L., Li, Y. et al. Photocatalytic Degradation Mechanism of the Visible-Light Responsive BiVO4/TiO2 Core–Shell Heterojunction Photocatalyst. J Inorg Organomet Polym 30, 775–788 (2020). https://doi.org/10.1007/s10904-019-01217-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01217-w

Keywords

Navigation