Skip to main content
Log in

A smart and sustainable adsorption-based system for decontamination of amoxicillin from water resources by the application of cellular lightweight concrete: experimental and modeling approaches

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Antibiotics such as amoxicillin (AMX) are considered as one of the emerging pollutants, which brings many environmental and health disasters. Removing AMX from water resources should be considered a mandatory action. Moreover, by considering sustainable development goals, construction and demolition wastes may be applied as an entity of manufacturing in the different fields. In this paper, according to our best knowledge for the first time, cellular lightweight concrete waste was used as a non-expensive, powerful, and novel adsorbent for AMX removal from water. Based on response surface methodology, the key factors of adsorption process, including contact time, amounts of adsorbent, and pH, were studied. The ideal conditions for the removal of AMX are pH 11.65, the mass of adsorbent: 19.31 mg, and 34 min contact time. In addition, among the prediction models, the adaptive neuro-fuzzy inference system was more fitted in comparison with random tree, multilayer perceptron and random forest algorithms. Different isotherm models such as Freundlich, Dubinin–Radushkevich, Langmuir, and Temkin, which have two-parameter equations besides Khan, Toth, and Sips with three-parameter equations were studied, and as a result, multilayer adsorption with the mainly heterogeneous surface was interpreted and fitted by the Freundlich model. Moreover, the kinetic models of adsorption, including pseudo-first- and second-order, Boyd, Elovich, intra-particle, and geometry kinematic computations, were examined, and pseudo-first order was more fitted with the adsorptive reaction. As per the geometric outcomes, the process of AMX adsorption appeared perfectly because there is no interaction between the adsorption and desorption rate graphs. These materials can be recycled with effective capacity for AMX removal after almost four repeated cycles. Finally, the competitive adsorption issue is investigated in detail between AMX and four other contaminations, including lead ion (Pb2+), malachite green, azithromycin (AZ), and sodium chloride (NaCl).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. E.M. Dias, C. Petit, J. Mater. Chem. A. 3, 22484 (2015)

    Article  CAS  Google Scholar 

  2. T. Teymoorian, T. Teymourian, E. Kowsari, S. Ramakrishna, J. Water Process. Eng. 42, 102193 (2021)

    Article  Google Scholar 

  3. T. Teymourian, T. Teymoorian, E. Kowsari, S. Ramakrishna, Res. Chem. Intermed. 47, 4879 (2021)

    Article  CAS  Google Scholar 

  4. M. Álvarez, L. Gómez, R. Ulloa, F. Deive, M. Sanromán, A. Rodríguez, Chem. Eng. J. 298, 10 (2016)

    Article  Google Scholar 

  5. Q.Q. Zhang, G.G. Ying, C.G. Pan, Y.S. Liu, J.L. Zhao, Environ. Sci. Technol. 49, 6772 (2015)

    Article  CAS  Google Scholar 

  6. M.A. Chayid, M.J. Ahmed, J. Environ. Chem. Eng. 3, 1592 (2015)

    Article  CAS  Google Scholar 

  7. M. Shafaati, M. Miralinaghi, R.H.S.M. Shirazi, E. Moniri, Res. Chem. Intermed. 46, 5231 (2020)

    Article  CAS  Google Scholar 

  8. M. Esmati, A. Allahresani, A. Naghizadeh, Res. Chem. Intermed. 47, 1447 (2021)

    Article  CAS  Google Scholar 

  9. J.M. Chaba, P.N. Nomngongo, Emerg. Contam. 5, 143 (2019)

    Article  Google Scholar 

  10. O. Pezoti, A.L. Cazetta, K.C. Bedin, L.S. Souza, A.C. Martins, T.L. Silva, O.O.S. Júnior, J.V. Visentainer, V.C. Almeida, Chem. Eng. J. 288, 778 (2016)

    Article  CAS  Google Scholar 

  11. Ö. Kerkez-Kuyumcu, ŞS. Bayazit, M.A. Salam, J. Ind. Eng. Chem. 36, 198 (2016)

    Article  CAS  Google Scholar 

  12. S.Y. Chun, W.J. Chung, S.S. Kim, J.T. Kim, S.W. Chang, J. Ind. Eng. Chem. 27, 291 (2015)

    Article  CAS  Google Scholar 

  13. R.D.C. Soltani, M. Mashayekhi, A. Khataee, M.-J. Ghanadzadeh, M. Sillanpää, J. Ind. Eng. Chem. 64, 373 (2018)

    Article  Google Scholar 

  14. M. Sheydaei, S. Aber, A. Khataee, J. Ind. Eng. Chem. 20, 1772 (2014)

    Article  CAS  Google Scholar 

  15. R. Kıdak, Ş Doğan, Ultrason. Sonochem. 40, 131 (2018)

    Article  Google Scholar 

  16. F. Sopaj, M.A. Rodrigo, N. Oturan, F.I. Podvorica, J. Pinson, M.A. Oturan, Chem. Eng. J. 262, 286 (2015)

    Article  CAS  Google Scholar 

  17. Y. Belaissa, D. Nibou, A. Assadi, B. Bellal, M. Trari, J. Taiwan Inst. Chem. Eng. 68, 254 (2016)

    Article  CAS  Google Scholar 

  18. D. Balarak, E. Bazrafshan, F. Kord Mostafapour, Am. Chem. Sci. J. 11, 1 (2016)

    Article  Google Scholar 

  19. T. Teymoorian, N. Hashemi, M.H. Mousazadeh, Z. Entezarian, SN Appl. Sci. 3, 1 (2021)

    Article  Google Scholar 

  20. C. Peng, Z. He, J. Feng, D. Chen, H. Ding, J. Wang, G. Du, Res. Chem. Intermed. 46, 5345 (2020)

    Article  CAS  Google Scholar 

  21. M.N. Alnajrani, O.A. Alsager, Sci. Rep. 10, 1 (2020)

    Article  Google Scholar 

  22. G. Wang, Y. Zhang, S. Wang, Y. Wang, H. Song, S. Lv, C. Li, Environ. Sci. Water Res. Technol. 6, 1568 (2020)

    Article  CAS  Google Scholar 

  23. T. Teymourian, M.R. Alavi Moghaddam, and E. Kowsari, Environ. Sci. Pollut. Res. 1 (2021)

  24. M. Eftekhari, M. Gheibi, H. Azizi-Toupkanloo, Z. Hossein-Abadi, M. Khraisheh, A.M. Fathollahi-Fard, G. Tian, J. Ind. Inf. Integr. 23, 100219 (2021)

    Google Scholar 

  25. G. Assembly, Sustainable development goals. (United Nations Development Programme, 2015). Accessed 27 Nov 2021.

  26. M.R. Chirani, E. Kowsari, T. Teymourian, S. Ramakrishna, Sci. Total Environ. 796, 149013 (2021)

    Article  CAS  Google Scholar 

  27. M. Bigdeloo, T. Teymourian, E. Kowsari, S. Ramakrishna, A. Ehsani, Mater. Circ. Econ. 3, 3 (2021)

    Article  Google Scholar 

  28. T. Teymourian, T. Teymoorian, E. Kowsari, S. Ramakrishna, Mater. Circ. Econ. 3, 6 (2021)

    Article  Google Scholar 

  29. S.M. Parsa, A. Rahbar, M. Koleini, S. Aberoumand, M. Afrand, M. Amidpour, Desalination 480, 114354 (2020)

    Article  CAS  Google Scholar 

  30. S.M. Parsa, M. Majidniya, W.H. Alawee, H.A. Dhahad, H.M. Ali, M. Afrand, M. Amidpour, Sustain. Energy Technol. Assess. 47, 101478 (2021)

    Google Scholar 

  31. A. Al Subhi, M. Valizadeh Kiamahalleh, M. Firouzi, F. Yousefi, H.H. Kyaw, M. Al Abri, A. Firouzi, M. Valizadeh Kiamahalleh, Adv. Sustain. Syst. 4, 2000055 (2020)

    Article  CAS  Google Scholar 

  32. K. Jitchaiyaphum, T. Sinsiri, C. Jaturapitakkul, P. Chindaprasirt, Int. J. Miner. Metall. Mater 20, 462 (2013)

    Article  CAS  Google Scholar 

  33. D.A. Palacio, B.F. Urbano, B.L. Rivas, Environ. Technol. Innov. 23, 101589 (2021)

    Article  CAS  Google Scholar 

  34. H. Fazelirad, M. Ranjbar, M.A. Taher, G. Sargazi, J. Ind. Eng. Chem. 21, 889 (2015)

    Article  CAS  Google Scholar 

  35. P. Ghisellini, C. Cialani, S. Ulgiati, J. Clean. Prod. 114, 11 (2016)

    Article  Google Scholar 

  36. A.V. Shekdar, Waste Manag. 29, 1438 (2009)

    Article  CAS  Google Scholar 

  37. M. Gheibi, M. Eftekhari, M. Tabrizi, A. Fathollahi-Fard, G. Tian, Int. J. Environ. Sci. Technol. 18, 1 (2021)

    Article  Google Scholar 

  38. A.M. Alnahhal, U.J. Alengaram, S. Yusoff, R. Singh, M.K. Radwan, W. Deboucha, J. Build. Eng. 35, 102047 (2021)

    Article  Google Scholar 

  39. C.-F. Chang, J.-W. Cem, Concr. Res. 36, 1760 (2006)

    Article  CAS  Google Scholar 

  40. R. Pathak, S. Pankaj, M. Ratnam, Int. J. Res. Chem. Environ. 2, 58 (2012)

    CAS  Google Scholar 

  41. S. Bouameur, A. Brahmi, M. Bounab, A. Khellifi, J Fac Méd d’Oran 6(1), 755 (2022)

    Google Scholar 

  42. Y. Belaissa, F. Saib, M. Trari, React. Kinet. Mech. Catal. 135(2), 1011 (2022)

    Article  CAS  Google Scholar 

  43. R. Zandipak, S. Sobhanardakani, Clean Technol. Environ. Policy 20(4), 871 (2018)

    Article  CAS  Google Scholar 

  44. W. Liu, N.B. Sutton, H.H. Rijnaarts, A.A. Langenhoff, Crit. Rev. Environ. Sci. Technol. 46(19–20), 1584 (2016)

    Article  CAS  Google Scholar 

  45. J. Lamontagne, P. Dumas, V. Mouillet, J. Kister, Fuel 80(4), 483 (2001)

    Article  CAS  Google Scholar 

  46. W. Wang, Y. Zhao, H. Bai, T. Zhang, V. Ibarra-Galvan, S. Song, Carbohydr. Polym. 198, 518 (2018)

    Article  CAS  Google Scholar 

  47. M. Rajabi, K. Mahanpoor, O. Moradi, Compos. B. Eng. 167, 544 (2019)

    Article  CAS  Google Scholar 

  48. M. Safaeian, A.M. Fathollahi-Fard, G. Tian, Z. Li, H. Ke, J. Intell. Fuzzy Syst. 37, 1435 (2019)

    Article  Google Scholar 

  49. M. Hallajiqomi, H. Eisazadeh, J. Ind. Eng. Chem. 55, 191 (2017)

    Article  CAS  Google Scholar 

  50. K.Y. Foo, B.H. Hameed, Chem. Eng. J. 156, 2 (2010)

    Article  CAS  Google Scholar 

  51. O. Celebi, Ç. Üzüm, T. Shahwan, H.N. Erten, J. Hazard. Mater. 148, 761 (2007)

    Article  CAS  Google Scholar 

  52. M. Dubinin, Chem. Rev. 60, 235 (1960)

    Article  CAS  Google Scholar 

  53. H.R. Nodeh, M.A. Kamboh, W.A.W. Ibrahim, B.H. Jume, H. Sereshti, M.M. Sanagi, Environ. Sci. Process. Impacts 21, 714 (2019)

    Article  CAS  Google Scholar 

  54. K. Vijayalakshmi, B.M. Devi, S. Latha, T. Gomathi, P. Sudha, J. Venkatesan, S. Anil, Int. J. Biol. Macromol. 104, 1483 (2017)

    Article  CAS  Google Scholar 

  55. M. Samandari, H. Movahedian Attar, K. Ebrahimpour, F. Mohammadi, Iran. Air Soil Water Res. 15, 11786221221103880 (2022)

    Google Scholar 

  56. Ł Klapiszewski, K. Siwińska-Stefańska, D. Kołodyńska, Chem. Eng. J. 330, 518 (2017)

    Article  CAS  Google Scholar 

  57. B. Sadeghalvad, A. Azadmehr, A. Hezarkhani, Ecol. Eng. 106, 219 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial and spiritual support provided by Amirkabir University of Technology (AUT) in Tehran, Iran. Author Seeram Ramakrishna acknowledges Sustainable Tropical Data Centre Test Bed: A-0009465-01-00 awarded by the National Research Foundation of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elaheh Kowsari or Seeram Ramakrishna.

Ethics declarations

Conflict of interest

The authors allege that they have no known conflicting financial or personal interests that might have influenced the work presented in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1026 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, M., Teymourian, T., Teymoorian, T. et al. A smart and sustainable adsorption-based system for decontamination of amoxicillin from water resources by the application of cellular lightweight concrete: experimental and modeling approaches. Res Chem Intermed 49, 341–370 (2023). https://doi.org/10.1007/s11164-022-04880-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04880-w

Keywords

Navigation