Skip to main content
Log in

Kinetics and mechanism of photocatalytic degradation of rhodamine B on nanorod bismuth ferrite perovskite prepared by hydrothermal method

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Bismuth ferrite perovskite BiFeO3 (BFO) being used for many applications was prepared by hydrothermal method at various heating temperatures and duration. X-ray diffractometry, scanning electronic microscopy, and high-resolution transmission electron microscopy (HR-TEM) displayed the optimum nanorod structure of BFO samples after being heated at 160 °C for 12 h in the autoclave (BFO*). Additionally, the morphology of BFO* was also analyzed by energy-dispersive spectroscopy and the nitrogen adsorption isotherms. The photocatalytic degradation of rhodamine B (RhB) with the presence of BFO* under visible light demonstrated the hypsochromic shifts of maximum absorbance to the blue region over time due to the N-deethylations. BFO efficiently decomposed RhB under various reaction conditions. About 77% of the initial RhB was degraded after 45 min at 30 °C and most of the RhB vanished after 60 min at 45 °C. The RhB degradation with BFO* exhibited the pseudo-first-order kinetics and the apparent activation energy of 57.94 kJ mol−1. After being recycled five times, the degradation efficiency of BFO* displayed unremarkable changes with good stability of materials. From the analysis of generated intermediates by high-performance liquid chromatography coupled with ESI ionized mass spectroscopy, the RhB degradation process was also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data and materials generated or analyzed during this study are included in this published article and supplementary information file and are available from the corresponding author upon reasonable request.

References

  1. L. Nitschke, W. Schüssler, Chemosphere 36, 35 (1998)

    Article  CAS  Google Scholar 

  2. F.H.M. Tang, M. Lenzen, A. McBratney, F. Maggi, Nat. Geosci. 14, 206 (2021)

    Article  CAS  Google Scholar 

  3. Q. Liu, I.O.P. Conf, Ser. Earth Environ. Sci. 514, 052001 (2020)

    Google Scholar 

  4. J.M. Poyatos, M.M. Muñio, M.C. Almecija, J.C. Torres, E. Hontoria, F. Osorio, Water. Air. Soil Pollut. 205, 187 (2010)

    Article  CAS  Google Scholar 

  5. Y. Deng, R. Zhao, Curr. Pollut. Reports 1, 167 (2015)

    Article  CAS  Google Scholar 

  6. S. Jallouli, A. Wali, A. Buonerba, T. Zarra, V. Belgiorno, V. Naddeo, M. Ksibi, J. Water Process Eng. 38, 101642 (2020)

    Article  Google Scholar 

  7. J.A. Navio, F.J. Marchena, C. Cerrillos, F. Pablos, J. Photochem. Photobiol. A Chem. 71, 97 (1993)

    Article  CAS  Google Scholar 

  8. M. Zhang, H. Dong, L. Zhao, D. Wang, D. Meng, Sci. Total Environ. 670, 110 (2019)

    Article  CAS  Google Scholar 

  9. A. Babuponnusami, K. Muthukumar, J. Environ. Chem. Eng. 2, 557 (2014)

    Article  CAS  Google Scholar 

  10. S.F. Kang, C.H. Liao, S.T. Po, Chemosphere 41, 1287 (2000)

    Article  CAS  Google Scholar 

  11. R. Bauer, H. Fallmann, Res. Chem. Intermed. 23, 341 (1997)

    Article  CAS  Google Scholar 

  12. B. Kasprzyk-Hordern, M. Ziółek, J. Nawrocki, Appl. Catal. B Environ. 46, 639 (2003)

    Article  CAS  Google Scholar 

  13. C. Wei, F. Zhang, Y. Hu, C. Feng, H. Wu, Rev. Chem. Eng. 33(1), 49–89 (2017)

    Article  CAS  Google Scholar 

  14. V. Naddeo, D. Ricco, D. Scannapieco, and V. Belgiorno, Int. J. Photoenergy 2012, 1 (2012)

  15. J. Glienke, W. Schillberg, M. Stelter, P. Braeutigam, Ultrason. Sonochem. 82, 105867 (2022)

    Article  CAS  Google Scholar 

  16. R. Ameta, M. S. Solanki, S. Benjamin, and S. C. Ameta, in Adv. Oxid. Process. Wastewater Treat. Emerg. Green. Chem. Technol. (Elsevier, 2018), pp. 135–175

  17. D. Zhu, Q. Zhou, Environ. Nanotechnol. Monit. Manag. 12, 100255 (2019)

    Google Scholar 

  18. P. Qu, J. Zhao, T. Shen, H. Hidaka, J. Mol. Catal. A Chem. 129, 257 (1998)

    Article  CAS  Google Scholar 

  19. D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng, R. Zhang, L. Wang, H. Liu, Y. Liu, R. Ruan, J. Clean. Prod. 268, 121725 (2020)

    Article  CAS  Google Scholar 

  20. C. Hariharan, Appl. Catal. A Gen. 304, 55 (2006)

    Article  CAS  Google Scholar 

  21. A. Bhattacharjee, M. Ahmaruzzaman, T. Sinha, Spectrochim Acta Part A Mol. Biomol. Spectrosc. 136, 751 (2015)

    Article  CAS  Google Scholar 

  22. R. Ullah, J. Dutta, J. Hazard. Mater. 156, 194 (2008)

    Article  CAS  Google Scholar 

  23. K. Mori, K. Maki, S. Kawasaki, S. Yuan, H. Yamashita, Chem. Eng. Sci. 63, 5066 (2008)

    Article  CAS  Google Scholar 

  24. F.M. Sanakousar, C.C. Vidyasagar, V.M. Jiménez-Pérez, K. Prakash, Mater. Sci. Semicond. Process. 140, 106390 (2022)

    Article  CAS  Google Scholar 

  25. Y.N. Tan, C.L. Wong, A.R. Mohamed, I.S.R.N. Mater, Sci. 2011, 1 (2011)

    Google Scholar 

  26. J. Chen, J. Shi, X. Wang, H. Cui, M. Fu, Cuihua Xuebao/Chinese. J. Catal. 34, 621 (2013)

    CAS  Google Scholar 

  27. R. Gusain, K. Gupta, P. Joshi, O.P. Khatri, Adv. Colloid. Interface. Sci. 272, 102009 (2019)

    Article  CAS  Google Scholar 

  28. R. Ullah, H. Sun, H.M. Ang, M.O. Tadé, S. Wang, Sep. Purif. Technol. 89, 98 (2012)

    Article  CAS  Google Scholar 

  29. M.M. Sabzehmeidani, H. Karimi, M. Ghaedi, Polyhedron 170, 160 (2019)

    Article  CAS  Google Scholar 

  30. M. Niu, H. Zhu, Y. Wang, J. Yan, N. Chen, P. Yan, J. Ouyang, A.C.S. Appl, Mater. Interfaces 12, 33899 (2020)

    Article  CAS  Google Scholar 

  31. S. Das, S. Rana, S.M. Mursalin, P. Rana, A. Sen, Sens. Actuators. B. Chem. 218, 122 (2015)

    Article  CAS  Google Scholar 

  32. N.N. Dao, M.D. Luu, N.C. Pham, T.D. Doan, T.H.C. Nguyen, Q.B. Nguyen, T.L. Duong, Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 045003 (2016)

    Article  Google Scholar 

  33. T. Soltani, M.H. Entezari, Chem. Eng. J. 223, 145 (2013)

    Article  CAS  Google Scholar 

  34. H. Singh, J.K. Rajput, J. Iran. Chem. Soc. 16, 2409 (2019)

    Article  CAS  Google Scholar 

  35. F.T.L. Muniz, M.A.R. Miranda, C. Morilla dos Santos, J.M. Sasaki, Acta Crystallogr. Sect. A Found. Adv. 72, 385 (2016)

    Article  CAS  Google Scholar 

  36. T.V.H. Luu, M.D. Luu, N.N. Dao, V.T. Le, H.T. Nguyen, V.D. Doan, J. Dispers. Sci. Technol. 42, 1311 (2021)

    Article  CAS  Google Scholar 

  37. Q. Yang, Y. Li, Q. Yin, P. Wang, Y.-B. Cheng, Mater. Lett. 55, 46 (2002)

    Article  CAS  Google Scholar 

  38. R. Bardestani, G.S. Patience, S. Kaliaguine, Can. J. Chem. Eng. 97, 2781 (2019)

    Article  CAS  Google Scholar 

  39. F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z. Zou, J.M. Liu, Adv. Mater. 19, 2889 (2007)

    Article  CAS  Google Scholar 

  40. U.A. Joshi, J.S. Jang, P.H. Borse, J.S. Lee, Appl. Phys. Lett. 92, 242106 (2008)

    Article  Google Scholar 

  41. T. Wu, G. Liu, J. Zhao, H. Hidaka, N. Serpone, J. Phys. Chem. B 102, 5845 (1998)

    Article  CAS  Google Scholar 

  42. P. Wang, M. Cheng, Z. Zhang, J. Saudi Chem. Soc. 18, 308 (2014)

    Article  Google Scholar 

  43. J. J. Velázquez, R. Fernández-González, L. Díaz, E. Pulido Melián, V. D. Rodríguez, and P. Núñez, (2017) J. Alloys. Compd. 721 405

  44. W. Li, Y. Zhang, P. Zhao, P. Zhou, Y. Liu, X. Cheng, J. Wang, B. Yang, H. Guo, J. Hazard. Mater. 393, 122399 (2020)

    Article  CAS  Google Scholar 

  45. K. Yu, S. Yang, H. He, C. Sun, C. Gu, Y. Ju, J. Phys. Chem. A 113, 10024 (2009)

    Article  CAS  Google Scholar 

  46. S. Rasalingam, R. Peng, R.T. Koodali, Appl. Catal. B Environ. 174–175, 49 (2015)

    Article  Google Scholar 

  47. C. Shi, Z.-H. Nie, L. Zhao, L. Lu, F. Cheng, X. Chen, G. Tan, Q.-Q. Liu, J. Wang, R. Chauhan, A. Kumar, Polyhedron 207, 115362 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the program for Senior Researchers of the Vietnam Academy of Science and Technology under grant number NVCC04.10/22-23. Bac Quang Nguyen was funded by Vingroup JSC and supported by the Master, PhD Scholarship Programme of Vingroup Innovation Foundation (VINIF), Institute of Big Data, code VINIF.2021.TS.101.

Funding

Nhiem Ngoc Dao received funding from the Program for Senior Researchers of the Vietnam Academy of Science and Technology under grant number NVCC04.10/22–23.

Author information

Authors and Affiliations

Authors

Contributions

KTN was involved in conceptualization, methodology, writing—original draft, and project administration. BQN contributed to formal analysis, validation, writing, review, and editing. NND was involved in data curation, resources, and supervision. HBL contributed to supervision, review, and editing. CTHN was involved in investigation and resources. CNP contributed to data curation and software. LTD was involved in investigation, resources, and visualization. MVNN contributed to writing, review, and editing.

Corresponding author

Correspondence to Nhiem Ngoc Dao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 813 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, K.T., Nguyen, C.T.H., Pham, C.N. et al. Kinetics and mechanism of photocatalytic degradation of rhodamine B on nanorod bismuth ferrite perovskite prepared by hydrothermal method. Res Chem Intermed 49, 57–72 (2023). https://doi.org/10.1007/s11164-022-04877-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04877-5

Keywords

Navigation