Skip to main content
Log in

Efficient Z-scheme LaCoO3/In2O3 heterostructure photocatalyst for fast dye degradation under visible light irradiation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Lanthanum cobaltite (LaCoO3) is an active catalyst for photocatalytic application owing to its good structural stability, visible light absorbance ability, low cost and earth abundant. Significant research works have been carried out to accelerate the photocatalytic activity of LaCoO3. Particularly, controlling the band potentials, charge carrier transfer and electron–hole separation play a critical role in photodegradation process. By considering all these facts, in the present research work, LaCoO3/In2O3 heterostructure photocatalyst is synthesized via facile wet chemical route and its photodegradation activity is studied for the first time. The structural analysis confirmed the formation of cubic In2O3 phase along with rhombohedral LaCoO3 heterostructure. Moreover, X-ray photoelectron spectroscopy (XPS) analysis revealed the corresponding binding energy state of LaCoO3/In2O3 sample. The binding energy of In3d peak position in XPS and the lattice spacing of (222) plane in HR-TEM infer the In2O3 phase evolution with LaCoO3. Eventually, methylene blue (MB) dye has been utilized for investigating dye degradation ability of bare LaCoO3 and LaCoO3/In2O3 heterostructure photocatalysts for various concentrations of In2O3. Among them, 4 mol.% In-doped LaCoO3/In2O3 heterostructure photocatalyst exhibits an efficient dye degradation rate and time (~ 98% in 20 min) under visible light irradiation. The photodegradation repeatability experiment showed the stable degradation activities even up to 10 cycles. Also, the interaction of MB dye molecules with LaCoO3/In2O3 photocatalyst has been studied theoretically. This result ensured that a desired band edge alignment between LaCoO3 and In2O3 phases is a reason for efficient photocatalytic reaction. It also revealed the developing heterostructure formation using suitable metal oxide with LaCoO3 semiconductor to be an outstanding one, especially for attaining an efficient dye degradation rate and time. Thus, this study notifies us that there will be a hope certainly cultivated in the photocatalytic research realm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. M. Behera, J. Nayak, S. Banerjee, S. Chakrabortty, S.K. Tripathy, J. Environ. Chem. Eng. 9, 105277 (2021)

    Article  CAS  Google Scholar 

  2. D. Bhattacharya, D. Ghoshal, D. Mondal, B.K. Paul, N. Bose, S. Das, M. Basu, Results Phys. 12, 1850 (2019)

    Article  Google Scholar 

  3. A.G. Naikwade, M.B. Jagadale, D.P. Kale, A.D. Gophane, K.M. Garadkar, G.S. Rashinkar, ACS Omega 5, 131–144 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. R.A. Soomro, A. Nafady, Sirajuddin, S.T.H. Sherazi, N.H. Kalwar, M.R. Shah, K.R. Hallam, J. Nanomater 2015, 12 (2015)

    Article  Google Scholar 

  5. N.A.F. Al-Rawashdeh, O. Allabadi, M.T. Aljarrah, ACS Omega 5, 28046–28055 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. A.M. Al-Hamdi, U. Rinner, M. Sillanpää, Process Saf. Environ. Prot. 107, 190 (2017)

    Article  CAS  Google Scholar 

  7. L.A. Luu Thi, M.M. Neto, T.P. Van, T. Nguyen Ngoc, T.M. Nguyen Thi, X.S. Nguyen, C.T. Nguyen, Adv. Mater. Sci. Eng. 2021, 6651633 (2021)

    Article  Google Scholar 

  8. R.F. De Mello Peters, P.A.M. Dos Santos, T.C. Machado, D.A.R. Lopez, Ê.L. Machado, A. De Assis Lawisch Rodriguez, Eclet Quim 43, 26–32 (2018)

    Article  Google Scholar 

  9. P. Nakhostin Panahi, M.H. Rasoulifard, S. Babaei, Rare Met 39, 139–146 (2020)

    Article  CAS  Google Scholar 

  10. F.F. Wang, Q. Li, D.S. Xu, Adv. Energy Mater. 7, 1–19 (2017)

    Google Scholar 

  11. C.R. Michel, M.A. López-Alvarez, A.H. Martínez-Preciado, V. Oleinikov, ECS J. Solid State Sci. Technol. 8, 9–14 (2019)

    Article  Google Scholar 

  12. S. Zhang, N. Han, X. Tan, RSC Adv. 5, 760 (2015)

    Article  CAS  Google Scholar 

  13. A.A. Ansari, S.F. Adil, M. Alam, N. Ahmad, M.E. Assal, J.P. Labis, A. Alwarthan, Sci Rep. 10, 15012 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. L. Predoana, B. Malic, M. Zaharescu, J. Therm. Anal. Calorim. 98, 361 (2009)

    Article  CAS  Google Scholar 

  15. S. Mukhopadhyay, M.W. Finnis, N.M. Harrison, Phy Rev 87(12), 125132 (2013)

    Article  Google Scholar 

  16. A. Ansari, V.U. Siddiqui, W.A. Siddiqi, Hybrid Perovskite Compos. Mater. 4, 117 (2021)

    Article  Google Scholar 

  17. K. Sathiyamoorthy, S. Bharathkumar, R. Roshan Chandrapal, S. Harish, M. Navaneethan, J. Mater. Sci. Mater. Electron. 33(12), 9755 (2022)

    Article  CAS  Google Scholar 

  18. W. Zhu, X. Li, Appl. Phys. A 123, 272 (2017)

    Article  Google Scholar 

  19. H. Liu, H. Zhai, Hu. Chunjie, J. Yang, Z. Liu, Nanoscale Res. Lett. 12, 466 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  20. A. Das, M. Patra, P. Mathan Kumar, M. Bhagavathiachari, R.G. Nair, Mater. Chem. Phys. 263, 124431 (2021)

    Article  CAS  Google Scholar 

  21. S. Raha, Md. Ahmaruzzaman, Sci. Rep. 11, 6379 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. S. Jayapandi, D. Lakshmi, S. Premkumar, P. Packiyaraj, K. Anitha, Mater. Lett. 218, 205 (2018)

    Article  CAS  Google Scholar 

  23. S. Fu, H. Niu, Z. Tao, J. Song, C. Mao, S. Zhang, C. Chen, D. Wang, J. Alloys Compd. 576(5), 12 (2013)

    Google Scholar 

  24. Mu. Jingbo, B. Chen, M. Zhang, Z. Guo, P. Zhang, Z. Zhang, Y. Sun, C. Shao, Y. Liu, ACS Appl. Mater. Interfaces 4, 424–430 (2012)

    Article  Google Scholar 

  25. S. Jayapandi, S. Premkumar, D. Lakshmi et al.,J Mater Sci: Mater Electron 30, 8479–8492 (2019)

    CAS  Google Scholar 

  26. P. Saikia, A.T. Miah, P.P. Das,J. Chem. Sci. 129, 81–93 (2017)

    Article  CAS  Google Scholar 

  27. H. Zhang, D. Liu, S. Ren, H. Zhang, Res. Chem. Intermed. 43, 1529–1542 (2017)

    Article  CAS  Google Scholar 

  28. H. Guo, Y. Ke, D. Wang et al., J Nanopart Res. 15, 1475 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  29. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Farkas, J.B., Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09., Revision D.01, Gaussian, Inc., Wallingford CT, (2013)

  30. R. Dennington, T. Keith, J. Millam, GaussView 5.0.8, Semichem Inc, Shawnee Mission, KS (2009)

  31. X. Yang, L. Yang, W. Fan, H. Lin, Catal. Today 269, 56 (2016)

    Article  CAS  Google Scholar 

  32. G. Liu, Int. J. Electrochem. Sci. 6, 2162 (2011)

    CAS  Google Scholar 

  33. R. Xing, L. Xu, J. Song et al., Sci. Rep. 5, 10717 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Z.X. Cheng, X.H. Ren, J.Q. Xu, Q.Y. Pan, J. Nanomater. 2011, 1 (2011)

    Google Scholar 

  35. G. Palanisamy, K. Bhuvaneswari, G. Bharathi, T. Pazhanivel, A.N. Grace, S.K.K. Pasha, Chemosphere 273, 129687 (2021)

    Article  PubMed  CAS  Google Scholar 

  36. F. Petronella, A. Truppi, C. Ingrosso, T. Placido, M. Striccoli, M.L. Curri, A. Agostiano, R. Comparelli, Catal. Today 281, 85 (2017)

    Article  CAS  Google Scholar 

  37. E. Baylan, H. Akyildiz, O.A. Yildirim, Process. Appl. Ceram. 13, 189 (2019)

    Article  CAS  Google Scholar 

  38. P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 9, 6814 (2018)

    Article  PubMed  Google Scholar 

  39. Y. Ni, W. Wang, W. Huang, C. Lu, Z. Xu, J. Colloid Interface Sci. 428, 162 (2014)

    Article  PubMed  CAS  Google Scholar 

  40. J. Li, M. Zhang, Q. Li, J. Yang, Appl. Surf. Sci. 391, 184 (2017)

    Article  CAS  Google Scholar 

  41. Udayabhanu, G. Nagaraju, H. Nagabhushana, R.B. Basavaraj, G.K. Raghu, D. Suresh, H. Rajanaika, S.C. Sharma, Cryst. Growth Des. 16, 6828 (2016)

    Article  CAS  Google Scholar 

  42. Y. Zhao, Z. Li, J. Wei, X. Li, H. Shi, B. Cao, J. Fan, Chemosphere 292, 133430 (2022)

    Article  PubMed  CAS  Google Scholar 

  43. C. Lv, H. Chen, Hu. Mingjiang, T. Ai, Fu. Haoka, Environ Sci Pollut Res. 28(28), 37142 (2021)

    Article  CAS  Google Scholar 

  44. Qi. Fan, S. Zhang, L. Sun, X. Dong, L. Zhang, W. Shan, Z. Zhu, Chin. J. Catal. 37, 428–435 (2016)

    Article  CAS  Google Scholar 

  45. X. Guo, H. Yue, S. Huang, X. Gao, H. Chen, Wu. Pengfei, T. Zhang, Z. Wang, Microchim. Acta. 187, 218 (2020)

    Article  CAS  Google Scholar 

  46. Z. Dong, Z. Zhang, Y. Jiang, Y. Chu, X. Jiayue, Chem. Eng. J. 433, 133762 (2022)

    Article  CAS  Google Scholar 

  47. Y.J. Hwang, C. Hahn, B. Liu, P. Yang, ACS Nano 6, 5060 (2012)

    Article  PubMed  CAS  Google Scholar 

  48. T. Ochiai, A. Fujishima, J. Photochem. Photobiol. C Photochem. Rev. 13, 247 (2012)

    Article  CAS  Google Scholar 

  49. S. Jayapandi, S. Premkumar, V. Ramakrishnan, D. Lakshmi, S. Shanavas, R. Acevedo, K. Anitha, J. Mater. Sci. Mater. Electron. 31, 10689 (2020)

    Article  CAS  Google Scholar 

  50. P. Liu, Y. Liu, W. Ye, J. Ma, D. Gao, Nanotechnology 27, 22 (2016)

    Google Scholar 

  51. J. Guo, P. Li, Z. Yang, Catal. Commun. 122, 63 (2019)

    Article  CAS  Google Scholar 

  52. J. Sun, C.-H. Shen, J. Guo, He. Guo, Y.-F. Yin, Xu. Xin-Jie, Z.-H. Fei, Z.-T. Liu, X.-J. Wen, J. Colloid Interface Sci. 588, 19 (2021)

    Article  PubMed  CAS  Google Scholar 

  53. X.-J. Wen, L. Qian, X. Lv, J. Sun, J. Guo, Z.-H. Fei, C.-G. Niu, J. Hazard. Mater. 385, 121508 (2020)

    Article  PubMed  CAS  Google Scholar 

  54. J. Guo, C.-H. Shen, J. Sun, Xu. Xin-Jie, X.-Y. Li, Z.-H. Fei, Z.-T. Liu, X.-J. Wen, Sep. Purif. Technol. 259, 118109 (2021)

    Article  CAS  Google Scholar 

  55. C.-H. Shen, Y. Chen, Xu. Xin-Jie, X.-Y. Li, X.-J. Wen, Z.-T. Liu, R. Xing, He. Guo, Z.-H. Fei, J. Hazard. Mater 416, 126217 (2021)

    Article  PubMed  CAS  Google Scholar 

  56. S. Kaviya, E. Prasad, RSC Adv. 22, 17179 (2015)

    Article  Google Scholar 

  57. T. Di, X. Quanlong, W. Ho, H. Tang, Q. Xiang, Y. Jiaguo, Chem Cat Chem. 11(5), 1394 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors P. Soundarrajan (KPS) would like to thank KIOT Principal (Dr. PSS. Srinivasan) and Vice Principal (Dr. K. Vasagavel) for their constant support and encouragement. This work was funded by the Researchers Supporting Project Number (RSP-2021/267), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

SJ took part in investigation, methodology, data curation, writing—original manuscript, PS involved in writing—original manuscript & manuscript editing, SSK involved in theoretical calculation and manuscript editing, DL involved in synthesis part and data curation, MDA involved in writing original manuscript & reviewed the manuscript, Mohamed ouladsmane took part in methodology and conceptualization, and GM took part in formal analysis and reviewed the manuscript.

Corresponding authors

Correspondence to S. Jayapandi or Munirah D. Albaqami.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 297 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayapandi, S., Soundarrajan, P., Kumar, S.S. et al. Efficient Z-scheme LaCoO3/In2O3 heterostructure photocatalyst for fast dye degradation under visible light irradiation. Res Chem Intermed 48, 4419–4442 (2022). https://doi.org/10.1007/s11164-022-04832-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04832-4

Keywords

Navigation