Skip to main content
Log in

NOx photocatalytic degradation over ZnO–CdS heterostructure composite under visible light irradiation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

ZnO–CdS composites with different loadings of CdS were prepared by a simple wet chemical synthesis method for NOx degradation under visible light. The influence of CdS presence on the morphological and structural features of the synthesized composites was investigated through SEM, nitrogen adsorption–desorption isotherms, DRS, XRD, and FTIR analyses. XRD results and SEM images revealed the growth of ZnO nanoparticles along the “c” axis due to the presence of CdS leading to the formation of composites with needle/flower-like structures depending on the CdS content. The increased surface area and the enhanced visible light harvesting (e.g., ~ 2.4 eV) were observed for the photocatalyst containing CdS, as BET and DRS results show. The photocatalytic activity measurements evidenced that the NOx degradation using ZnO–CdS composites (60%) is higher comparatively with pristine ZnO (20%). This can be ascribed to the enlargement of surface area, the formation of flower-shaped structure, and the extended visible light response of the composites. Results indicate that there is on optimum value for CdS loading and the ZnO-15% CdS shows the best photoactivity for NO decomposition (60%). The proposed mechanism shows that the creation of heterojunction structure between CdS and ZnO and the subsequent charge separation can be responsible for the high photocatalytic performance of the as-prepared composites. Based on the results, this work represents a way forward in development of ZnO application in NOx abatement in urban environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Reyna-Cavazos, A. Martinez-de la Cruz, F.L. Rodríguez, E. López-Cuellar, Res. Chem. Intermed. 46, 1 (2020)

    Article  Google Scholar 

  2. R. Zouzelka, J. Rathousky, Appl. Catal. Environ. 217, 466 (2017)

  3. H.S. Russell, L.B. Frederickson, O. Hertel, T. Ellermann, S.S. Jensen, Catalysts 11, 6 (2021)

    Article  Google Scholar 

  4. J.V.S. de Melo, G. Trichês, Build. Environ. 49, 117 (2012)

  5. N. Todorova, T. Giannakopoulou, K. Pomoni, J. Yu, T. Vaimakis, C. Trapalis, Catal. Today 252, 41 (2015)

  6. H. Kominami, K. Sumida, K. Yamamoto, N. Kondo, K. Hashimoto, Y. Kera, Res. Chem. Intermed. 34, 5 (2008)

    Article  Google Scholar 

  7. E. Luevano-Hipolito, A. Martínez-De La Cruz, E. López-Cuellar, Q. Yu, H. Brouwers, Mater. Chem. Phys. 148, 1–2 (2014)

    Article  Google Scholar 

  8. Y. Gao, Y. Huang, Y. Li, Q. Zhang, J.-J. Cao, W. Ho, S.C. Lee, A.C.S. Sustain, Chem. Eng. 4, 12 (2016)

    Article  Google Scholar 

  9. F. Dong, T. Xiong, Z. Zhao, Y. Sun, M. Fu, Cryst. Eng. Commun. 15, 48 (2013)

    Google Scholar 

  10. Z. Ai, W. Ho, S. Lee, L. Zhang, Environ. Sci. Technol. 43, 11 (2009)

    Article  Google Scholar 

  11. W. Zhang, Q. Zhang, F. Dong, Ind. Eng. Chem. Res. 52, 20 (2013)

    Google Scholar 

  12. E. Kowsari, S. Abdpour, Optik 127, 23 (2016)

    Article  Google Scholar 

  13. A. Pastor, J. Balbuena, M. Cruz-Yusta, I. Pavlovic, L. Sánchez, Chem. Eng. J. 368, 659 (2019)

  14. P. Bakhtkhosh, A. Mehrizad, J. Mol. Liq. 240, 65 (2017)

  15. S. Allahveran, A. Mehrizad, J. Mol. Liq. 225, 339 (2017)

  16. K.-B. Kim, Y.W. Kim, S.K. Lim, T.H. Roh, D.Y. Bang, S.M. Choi, D.S. Lim, Y.J. Kim, S.-H. Baek, M.-K. Kim, J. Toxicol. Environ. Health—B 20, 3 (2017)

    Article  Google Scholar 

  17. A. Kołodziejczak-Radzimska, T. Jesionowski, Materials 7, 4 (2014)

    Article  Google Scholar 

  18. R. Suganya, N. Krishnaveni, Res. Chem. Intermed. 45, 2 (2019)

    Article  Google Scholar 

  19. D. Li, H. Haneda, J. Photochem. Photobiol. A: Chem. 160, 3 (2003)

    Article  Google Scholar 

  20. D. Li, H. Haneda, N. Ohashi, S. Hishita, Y. Yoshikawa, Catal. Today 93, 895 (2004)

  21. S. Chabri, A. Dhara, B. Show, D. Adak, A. Sinha, N. Mukherjee, Catal. Sci. Technol. 6, 3238 (2016)

    Article  CAS  Google Scholar 

  22. A. Dhara, B. Show, A. Baral, S. Chabri, A. Sinha, N.R. Bandyopadhyay, N. Mukherjee, Sol. Energ. 316, 327 (2016)

  23. C. Luo, D. Li, W. Wu, Y. Zhang, C. Pan, RSC Adv. 4, 3090 (2014)

    Article  CAS  Google Scholar 

  24. M.M. Rahman, G. Gruner, M.S. Al-Ghamdi, M.A. Daous, S.B. Khan, A.M. Asiri, Chem. Cent. J. 7, 60 (2013)

    Article  Google Scholar 

  25. T. Jana, S. Maji, A. Pal, R. Maiti, T. Dolai, K. Chatterjee, J. Colloid Interface Sci. 480, 9 (2016)

  26. A.G. Khosroshahi, A. Mehrizad, J. Mol. Liq. 275, 629 (2019)

  27. X. Xu, Y. Su, Y. Dong, X. Luo, S. Wang, W. Zhou, R. Li, K.P. Homewood, X. Xia, Y. Gao, J. Hazard. Mater. 424, 127685 (2022)

  28. X. Luo, Y. Ke, L. Yu, Y. Wang, K.P. Homewood, X. Chen, Y. Gao, Appl. Surf. Sci. 515, 145970 (2020)

  29. Y. Su, X. Xu, R. Li, X. Luo, H. Yao, S. Fang, K.P. Homewood, Z. Huang, Y. Gao, X. Chen, Chem. Eng. J. 429, 32241 (2022)

  30. A. Ataei, A. Mehrizad, K. Zare, J. Mol. Liq. 328, 115476 (2021)

  31. N. AttariKhasraghi, K. Zare, A. Mehrizad, N. Modirshahla, M.A. Behnajady, J. Inorg, Organomet Polym. Mater. 31, 7 (2021)

    Google Scholar 

  32. N. AttariKhasraghi, K. Zare, A. Mehrizad, N. Modirshahla, M.A. Behnajady, J. Mol. Liq. 342, 117479 (2021)

  33. K.A. Adegoke, M. Iqbal, H. Louis, O.S. Bello, Mater. Sci. Energy Technol. 2, 2 (2019)

    Google Scholar 

  34. C. Li, T. Ahmed, M. Ma, T. Edvinsson, J. Zhu, Appl. Catal. Environ. 138, 175 (2013)

  35. S. Wang, B. Zhu, M. Liu, L. Zhang, J. Yu, M. Zhou, Appl. Catal. Environ. 243, 19 (2019)

  36. G. Murugadoss, Particuology 10, 6 (2012)

    Article  Google Scholar 

  37. I. Zgura, N. Preda, G. Socol, C. Ghica, D. Ghica, M. Enculescu, I. Negut, L. Nedelcu, L. Frunza, C. Ganea, Mater. Res. Bull. 99, 174 (2018)

  38. E.B. Yazdani, A. Mehrizad, J. Mol. Liq. 255, 102 (2018)

  39. A. Mehrizad, P. Gharbani, Photochem. Photobiol. 93, 5 (2017)

    Article  Google Scholar 

  40. T.K. Jana, A. Pal, K. Chatterjee, J. Alloys Compd. 583, 510 (2014)

  41. H.-M. Shao, X.-Y. Shen, X.-T. Li, Y. Cui, W. Zhang, W.-D. Xu, Z.-C. Shao, Y.-C. Zhai, Int. J. Miner. Metall. 28, 4 (2021)

    Google Scholar 

  42. P. Kumar, K. Sharma, Mater. Sci-Poland. 36, 3 (2018)

    Google Scholar 

  43. N. Jayarambabu, B.S. Kumari, K.V. Rao, Y. Prabhu, Int. J. Curr. Eng. Technol. 4, 5 (2014)

    Google Scholar 

  44. S. Dinesh, R. Duchaniya, J. Nano- Electron. Phys. 5, 3 (1) (2013)

  45. S. Kameli, A. Mehrizad, Photochem. Photobiol. 95, 2 (2019)

    Article  Google Scholar 

  46. A. Mehrizad, M.A. Behnajady, P. Gharbani, S. Sabbagh, J. Clean. Prod. 215, 1341 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Alijani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modares, M., Alijani, S. & Nasernejad, B. NOx photocatalytic degradation over ZnO–CdS heterostructure composite under visible light irradiation. Res Chem Intermed 48, 1831–1845 (2022). https://doi.org/10.1007/s11164-022-04705-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04705-w

Keywords

Navigation