Skip to main content
Log in

Bismuth sulfide photocatalysis water treatment under visible irradiation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Many contaminants in water are not completely removed by conventional water purification techniques. So, the need of fast and efficient technique for water purification is required for efficient removal. Photocatalysis using low bandgap semiconductors is capable of detoxifying contaminated water. Herein, bismuth sulfide (Bi2S3) nanorods were synthesized using a solid-state reaction method and their photocatalytic performance was tested for the removal of Congo red dye from water. X-ray diffraction (XRD) results confirmed the formation of Bi2S3 with a crystallite size of 5.0 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images confirmed the formation of Bi2S3 nanorods with a diameter of 20–30 nm, length of 100 nm -150 nm and an aspect ratio of 5. Photoluminescence (PL) spectrum revealed the bandgap value of 2.47 eV. The specific surface area calculated using Brunauer–Emmett–Teller (BET) of Bi2S3 nanorods was 94.44 m2/g and pore volume was 0.158 cm3/g. The photodegradation of toxic Congo red was performed using Bi2S3 nanorods under UV irradiation. Photodegradation efficiencies up to 87% for Congo red dye were observed within 90 min. The pseudo-first-order (PFO) kinetic model was best fitted to understand the kinetics of photocatalysis. For Bi2S3 nanorods photocatalysts, the apparent rate constant value was 0.01573/min with a 0.997 correlation coefficient value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The data sets supporting the conclusion of this article are included within this article.

References

  1. S. Bolisetty, M. Peydayesh, R. Mezzenga, Chem. Soc. Rev. 48, 2 (2019)

    Article  Google Scholar 

  2. N. Singh, G. Nagpal, S. Agrawal, Environ. Technol. Innov. 11, (2018)

  3. M.L. Yola, T. Eren, N. Atar, S. Wang Chem. Eng. J. 242, (2014)

  4. V.K. Gupta, S. Agarwal, A. Olgun, H.İ. Demir, M.L. Yola, N. Atar, J. Indus. Eng. Chem. 34, (2016)

  5. N. Atar, A. Olgun, F. Çolak, Eng. Life Sci. 8, 5 (2008)

    Article  Google Scholar 

  6. K.P.Y. Shak and T.Y. Wu, Chem. Eng. J. 256, (2014)

  7. X. Li, Y. Chen, X. Hu, Y. Zhang, L. Hu, J. Membr. Sci. 471, (2014)

  8. K. Sivagami, B. Rajasekhar, S. Mujahed, I.M. Nambi, A.K. Rajan, J. Hazard. Toxic Radioact. Waste. 25, 2 (2021)

    Article  Google Scholar 

  9. J. Gong, C. He, J. Zhang, L. Wang, Res. Chem. Intermed. (2021).

  10. M.L. Yola, T. Eren, N. Atar, Chem. Eng. J. 250, (2014)

  11. H. Röder, E. Hahn, H. Brune, J.-P. Bucher, Nature 366, 6451 (1993)

    Article  Google Scholar 

  12. Z. Tan, S. Chen, X. Peng, L. Zhang, C. Gao, Science 360, 6388 (2018)

    Article  Google Scholar 

  13. A.B. Prevot, A. Basso, C. Baiocchi, M. Pazzi, G. Marci, V. Augugliaro, L. Palmisano, E. Pramauro, Anal. Bioanal. Chem. 378, 1 (2004)

    Article  Google Scholar 

  14. Y. Huang, F. Sun, H. Wang, Y. He, L. Li, Z. Huang, Q. Wu, C.Y. Jimmy, J. Mater. Chem. 19, 37 (2009)

    Google Scholar 

  15. R. Chen, M.H. So, C.-M. Che, H. Sun, J. Mater. Chem. 15, 42 (2005)

    CAS  Google Scholar 

  16. Q. Wang, Z. Liu, R. Jin, Y. Wang, S. Gao, Sep. Purif. Technol. 210, (2019)

  17. L. Song, S. Zhang, C. Chen, X. Hu, Q. Wei, Chem. Eng. J. 171, 3 (2011)

    Article  Google Scholar 

  18. S. Bera, S. Ghosh, R.N. Basu New J. Chem. 42, 1 (2018)

  19. J. Lu, Q. Han, X. Yang, L. Lu, X. Wang, Mater. Lett. 61, 16 (2007)

    Article  Google Scholar 

  20. S. Batool, S. Hassan, Z. Imran, M. Rafiq, M. Ahmad, K. Rasool, M. Chaudhry, M. Hasan, Catal. Commun. 49, (2014)

  21. H.-C. Liao, M.-C. Wu, M.-H. Jao, C.-M. Chuang, Y.-F. Chen, W.-F. Su, Cryst. Eng. Comm. 14, 10 (2012)

    Article  Google Scholar 

  22. J.L. Chen, V. Nalla, G. Kannaiyan, V. Mamidala, W. Ji, J.J. Vittal, New. J. Chem. 38, 3 (2014)

    Article  Google Scholar 

  23. F. Wei, J. Zhang, L. Wang, Z.-K. Zhang, Cryst. Growth. Des. 6, 8 (2006)

    Google Scholar 

  24. H. Wang, J.-J. Zhu, J.-M. Zhu, H.-Y. Chen, J. Phys. Chem. B 106, 15 (2002)

    Article  Google Scholar 

  25. S.C. Ameta, R. Chaudhary, R. Ameta, J. Vardia, J. Indian Chem. Soc. 80, 4 (2003)

    Google Scholar 

  26. G. Borghs, K. Bhattacharyya, K. Deneffe, P. Van Mieghem, R. Mertens, J. Appl. Phys. 66, 9 (1989)

    Article  Google Scholar 

  27. M. Anpo, M. Che, in, Adv. Catal. (1999), pp. 119–257

  28. H. Zhu, R. Jiang, J. Li, Y. Fu, S. Jiang, J. Yao, Sep. Purif. Technol. 179, (2017)

  29. S. Kumar, S. Sharma, A. Umar, S.K. Kansal, Nanosci. Nanotechnol. Lett. 8, 3 (2016)

    Google Scholar 

  30. T. Wu, X. Zhou, H. Zhang, X. Zhong, Nano Res. 3, 5 (2010)

    CAS  Google Scholar 

  31. C. McCullagh, J.M. Robertson, D.W. Bahnemann, P.K. Robertson, Res. Chem. Intermed. 33, 3 (2007)

    Article  Google Scholar 

  32. R.I. Bickley, L.T. Hogg, Res. Chem. Intermed. 33, 3 (2007)

    Article  Google Scholar 

  33. J. Ma, J. Ren, Y. Jia, Z. Wu, L. Chen, N.O. Haugen, H. Huang, Y. Liu, Nano Energy 62, (2019)

  34. R. Mohammed, M.E.M. Ali, E. Gomaa, M. Mohsen, J. Environ. Chem. Eng. 8, 5 (2020)

    Google Scholar 

  35. B. Ren, W. Shen, L. Li, S. Wu, W. Wang, Appl. Surf. Sci. 447, (2018)

  36. S. Yao, F. Qu, G. Wang, X. Wu, J. Alloys Compd. 724, (2017)

  37. S. Kumar, S. Sharma, S. Sood, A. Umar, S.K. Kansal, Ceram. Int. 42, 15 (2016)

    Google Scholar 

  38. S. Sharma, N. Khare, Adv Powder Technol. 29, 12 (2018)

    Article  Google Scholar 

  39. S. Sharma, N. Khare, Colloid Polym. Sci. 296, 9 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The author “S S Batool” acknowledges COMSATS University Islamabad

Funding

This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFB2200500), the National Natural Science Foundation of China (Grant no. 61974170,61934007,61675195), the Opened Fund of the State Key Laboratory of Integrated Optoelectronics No. IOSKL2018KF17, the Beijing Municipal Science and Technology Commission project (Grant No. Z191100004819011).

Author information

Authors and Affiliations

Authors

Contributions

The author AK initiated the research under supervision of SSB and CL. NA and MA did photocatalysis experiment. JA, SH and XZ helped in analyzing the data.

Corresponding authors

Correspondence to Syeda Sitwat Batool or Chuanbo Li.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, A., Akhtar, N., He, K. et al. Bismuth sulfide photocatalysis water treatment under visible irradiation. Res Chem Intermed 47, 3395–3409 (2021). https://doi.org/10.1007/s11164-021-04471-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04471-1

Keywords

Navigation