Skip to main content
Log in

Tungsten doping effect on bismuth vanadate (W-doped BiVO4) under visible-light irradiation for photocatalysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Photocatalysis (PC) wastewater treatment has received significant attention in recent years due to its potential applications in purified water, environmental remediation, degradation of organic pollutants in wastewater, and water splitting. In this research, a simple hydrothermal method was used to synthesize tungsten-doped bismuth vanadate (W-doped BiVO4) photocatalyst with dopant concentrations of 0, 0.5, 1.0, 2.0, and 3.0 wt%. Ethanol-dissolved bismuth vanadate and tetrahydrofuran-dissolved tungsten hexacarbonyl were used as precursors. The 1.0 wt% W-doped BiVO4 had a specific surface area (SSA) of 18 m2/g, and the optical energy band gap was determined to be 2.30 eV using UV–visible measurements. The photocatalytic efficacy of W-doped BiVO4 was evaluated by assessing the degradation of Rhodamine-B (Rh-B) in aqueous solutions under visible (400–800 nm) irradiation, with the photocatalytic activity measured as a function of tungsten concentration. The maximum photoactivity for the degradation of Rh-B was observed in W-doped BiVO4 at 1.0 wt% with a large specific surface area, which may be attributed to the incorporation of W into the BiVO4 crystal lattice and changes in surface characteristics. This study presents a novel platform for developing and manufacturing photocatalytic materials that enhance charge separation and fast transfer for highly effective water treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. A. Giwa et al., Recent advances in advanced oxidation processes for removal of contaminants from water: a comprehensive review. Process Saf. Environ. Prot. 146, 220–256 (2021)

    Article  CAS  Google Scholar 

  2. A.G. Akerdi, S.H. Bahrami, Application of heterogeneous nano-semiconductors for photocatalytic advanced oxidation of organic compounds: a review. J. Environ. Chem. Eng. 7(5), 103283 (2019)

    Article  CAS  Google Scholar 

  3. M. Tayebi, B.-K. Lee, Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting. Renew. Sustain. Energy Rev. 111, 332–343 (2019)

    Article  CAS  Google Scholar 

  4. D. Zhu, Q. Zhou, Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: a review. Environ. Nanotechnol. Monit. Manag. 12, 100255 (2019)

    Google Scholar 

  5. J. Yao et al., Promoting electrocatalytic hydrogen evolution reaction and oxygen evolution reaction by fields: effects of electric field, magnetic field, strain, and light. Small Methods 4(10), 2000494 (2020)

    Article  CAS  Google Scholar 

  6. G. Zhao et al., Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv. Func. Mater. 28(43), 1803291 (2018)

    Article  Google Scholar 

  7. S. Fatima et al., The high photocatalytic activity and reduced band gap energy of La and Mn co-doped BiFeO 3/graphene nanoplatelet (GNP) nanohybrids. RSC Adv. 7(57), 35928–35937 (2017)

    Article  CAS  Google Scholar 

  8. L. Zhang et al., Recent advances on bismuth-based photocatalysts: strategies and mechanisms. Chem. Eng. J. 419, 129484 (2021)

    Article  CAS  Google Scholar 

  9. M.M. Sajid et al., Hydrothermal fabrication of monoclinic bismuth vanadate (m-BiVO4) nanoparticles for photocatalytic degradation of toxic organic dyes. Mater. Sci. Eng., B 242, 83–89 (2019)

    Article  CAS  Google Scholar 

  10. K.R. Tolod, S. Hernández, N. Russo, Recent advances in the BiVO4 photocatalyst for sun-driven water oxidation: top-performing photoanodes and scale-up challenges. Catalysts 7(1), 13 (2017)

    Article  Google Scholar 

  11. S. Lardhi, L. Cavallo, M. Harb, Determination of the intrinsic defect at the origin of poor H2 evolution performance of the monoclinic BiVO4 photocatalyst using density functional theory. J. Phys. Chem. C 122(32), 18204–18211 (2018)

    Article  CAS  Google Scholar 

  12. C. Lu et al., Facile construction of CoO/Bi2WO6 pn heterojunction with following Z-Scheme pathways for simultaneous elimination of tetracycline and Cr (VI) under visible light irradiation. J. Alloy. Compd. 904, 164046 (2022)

    Article  CAS  Google Scholar 

  13. M.F.R. Samsudin, S. Sufian, B. Hameed, Epigrammatic progress and perspective on the photocatalytic properties of BiVO4-based photocatalyst in photocatalytic water treatment technology: a review. J. Mol. Liq. 268, 438–459 (2018)

    Article  CAS  Google Scholar 

  14. H.L. Tan, R. Amal, Y.H. Ng, Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review. J. Mater. Chem. A 5(32), 16498–16521 (2017)

    Article  CAS  Google Scholar 

  15. S.K. Lakhera et al., Fabrication of high surface area AgI incorporated porous BiVO4 heterojunction photocatalysts. Mater. Sci. Semicond. Process. 106, 104756 (2020)

    Article  CAS  Google Scholar 

  16. M.F.R. Samsudin et al., Superior photoelectrocatalytic performance of ternary structural BiVO4/GQD/g-C3N4 heterojunction. J. Colloid Interface Sci. 586, 785–796 (2021)

    Article  CAS  PubMed  Google Scholar 

  17. S.Y. Lai et al., Photocatalytic remediation of organic waste over Keggin-based polyoxometalate materials: a review. Chemosphere 263, 128244 (2021)

    Article  CAS  PubMed  Google Scholar 

  18. J. Kong et al., Perovskite-based photocatalysts for organic contaminants removal: current status and future perspectives. Catal. Today 327, 47–63 (2019)

    Article  CAS  Google Scholar 

  19. M. Liu et al., Recent advances in nanostructured vanadium oxides and composites for energy conversion. Adv. Energy Mater. 7(23), 1700885 (2017)

    Article  Google Scholar 

  20. D. Cao et al., Rational design of monolithic g-C3N4 with floating network porous-like sponge monolithic structure for boosting photocatalytic degradation of tetracycline under simulated and natural sunlight illumination. Molecules 28(10), 3989 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. Russo, G. Iervolino, V. Vaiano, W-doped ZnO photocatalyst for the degradation of glyphosate in aqueous solution. Catalysts 11(2), 234 (2021)

    Article  CAS  Google Scholar 

  22. A. Mayoufi, M.F. Nsib, A. Houas, Doping level effect on visible-light irradiation W-doped TiO2–anatase photocatalysts for Congo red photodegradation. C. R. Chim. 17(7–8), 818–823 (2014)

    Article  CAS  Google Scholar 

  23. Y.-S. Song et al., Photocatalytic activity of W-doped TiO2 nanofibers for methylene blue dye degradation. J. Nanosci. Nanotechnol. 16(2), 1831–1833 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. Q. Shi et al., Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: tuning the electron trapping process. ACS Catal. 8(4), 3331–3342 (2018)

    Article  CAS  Google Scholar 

  25. J.-S. Ma, L.-Y. Lin, Y.-S. Chen, Facile solid-state synthesis for producing molybdenum and tungsten co-doped monoclinic BiVO4 as the photocatalyst for photoelectrochemical water oxidation. Int. J. Hydrogen Energy 44(16), 7905–7914 (2019)

    Article  CAS  Google Scholar 

  26. W. Shi et al., Hydrothermal synthesis of InVO4/Graphitic carbon nitride heterojunctions and excellent visible-light-driven photocatalytic performance for rhodamine B. J. Alloy. Compd. 612, 143–148 (2014)

    Article  CAS  Google Scholar 

  27. B. Zhang et al., Doping strategy to promote the charge separation in BiVO4 photoanodes. Appl. Catal. B 211, 258–265 (2017)

    Article  CAS  Google Scholar 

  28. F. Chen et al., Atomic-level charge separation strategies in semiconductor-based photocatalysts. Adv. Mater. 33(10), 2005256 (2021)

    Article  CAS  Google Scholar 

  29. M.M. Sajid et al., Visible light assisted photocatalytic degradation of crystal violet dye and electrochemical detection of ascorbic acid using a BiVO4/FeVO4 heterojunction composite. RSC Adv. 8(42), 23489–23498 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S. Wang et al., Solvothermal synthesis of CoO/BiVO4 pn heterojunction with micro-nano spherical structure for enhanced visible light photocatalytic activity towards degradation of tetracycline. Mater. Res. Bull. 135, 111161 (2021)

    Article  CAS  Google Scholar 

  31. J. Mujtaba et al., Fine control over the morphology and photocatalytic activity of 3D ZnO hierarchical nanostructures: capping vs. etching. RSC Adv. 5(69), 56232–56238 (2015)

    Article  CAS  Google Scholar 

  32. C.K. Lim et al., Enhanced charge transport properties of dye-sensitized solar cells using TiN x O y nanostructure composite photoanode. J. Phys. Chem. C 116(37), 19659–19664 (2012)

    Article  CAS  Google Scholar 

  33. M. Jamshaid et al., A novel bentonite–cobalt doped bismuth ferrite nanoparticles with boosted visible light induced photodegradation of methyl orange: Synthesis, characterization and analysis of physiochemical changes. Int. J. Environ. Anal. Chem. (2022). https://doi.org/10.1080/03067319.2022.2032014

    Article  Google Scholar 

  34. S. Wu et al., BiOCl nano/microstructures on substrates: synthesis and photocatalytic properties. Mater. Lett. 65(9), 1344–1347 (2011)

    Article  CAS  Google Scholar 

  35. D. Nassoko et al., Neodymium-doped with anatase and brookite two phases: mechanism for photocatalytic activity enhancement under visible light and the role of electron. Int. J. Photoenergy (2012). https://doi.org/10.1155/2012/716087

    Article  Google Scholar 

  36. Q. Zhao et al., Facile ball-milling synthesis of WO3/g-C3N4 heterojunction for photocatalytic degradation of Rhodamine B. Chem. Phys. Lett. 805, 139908 (2022)

    Article  CAS  Google Scholar 

  37. P. Pookmanee et al., Methylene blue degradation over photocatalyst bismuth vanadate powder synthesized by the hydrothermal method. Adv. Mater. Res. (2010). https://doi.org/10.4028/www.scientific.net/AMR.93-94.177

    Article  Google Scholar 

  38. W.J. Jo et al., Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angew. Chem. 124(13), 3201–3205 (2012)

    Article  Google Scholar 

  39. L. Zhao et al., Photoelectrochemical performance of W-doped BiVO4 photoanode. J. Mater. Sci.: Mater. Electron. 30(24), 21425–21434 (2019)

    CAS  Google Scholar 

  40. J. Liu et al., Hydrothermal preparation of BiVO4 powders. Mater. Sci. Eng., B 104(1–2), 36–39 (2003)

    Article  Google Scholar 

  41. F. Zhou et al., Reduced graphene oxide-grafted cylindrical like W doped BiVO4 hybrids with enhanced performances for photocatalytic applications. Chem. Eng. J. 266, 48–55 (2015)

    Article  CAS  Google Scholar 

  42. H. Ye, H.S. Park, A.J. Bard, Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy. J. Phys. Chem. C 115(25), 12464–12470 (2011)

    Article  CAS  Google Scholar 

  43. H.S. Abd-Rabboh et al., Synthesis of an efficient, and recyclable mesoporous BiVO4/TiO2 direct Z-scheme heterojunction by sonochemical route for photocatalytic hydrogen production and photodegradation of rhodamine B dye in the visible region. Opt. Mater. 114, 110761 (2021)

    Article  CAS  Google Scholar 

  44. S.M. Thalluri et al., Green-synthesized W-and Mo-doped BiVO4 oriented along the 0 4 0 facet with enhanced activity for the sun-driven water oxidation. Appl. Catal. B 180, 630–636 (2016)

    Article  CAS  Google Scholar 

  45. X. Zhao et al., Clarifying the roles of oxygen vacancy in W-doped BiVO4 for solar water splitting. ACS Appl. Energy Mater. 1(7), 3410–3419 (2018)

    Article  CAS  Google Scholar 

  46. G. Zhao et al., Insight into a novel microwave-assisted W doped BiVO4 self-assembled sphere with rich oxygen vacancies oriented on rGO (W-BiVO4-x/rGO) photocatalyst for efficient contaminants removal. Sep. Purif. Technol. 277, 119610 (2021)

    Article  CAS  Google Scholar 

  47. X. Yuan et al., Free-standing electrospun W-doped BiVO4 porous nanotubes for the efficient photoelectrochemical water oxidation. Front. Chem. 8, 311 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. L. Shan, H. Liu, G. Wang, Preparation of tungsten-doped BiVO4 and enhanced photocatalytic activity. J. Nanopart. Res. 17(4), 1–11 (2015)

    Article  CAS  Google Scholar 

  49. J. Liu et al., Directed synthesis of SnO2@ BiVO4/Co-Pi photoanode for highly efficient photoelectrochemical water splitting and urea oxidation. J. Mater. Chem. A 7(11), 6327–6336 (2019)

    Article  CAS  Google Scholar 

  50. A.Z. Khan, E. Ruckenstein, Investigation of oxidative coupling of methane over bismuth oxychloride, samarium chloride, or manganese chloride supported on lithium carbonate-magnesia systems. J. Catal. 138(1), 322–342 (1992)

    Article  CAS  Google Scholar 

  51. F. Guo et al., Hydrothermal synthesis of graphitic carbon nitride–BiVO4 composites with enhanced visible light photocatalytic activities and the mechanism study. J. Phys. Chem. Solids 75(11), 1217–1222 (2014)

    Article  CAS  Google Scholar 

  52. B. Allured et al., Enhancing the visible light absorbance of Bi2Ti2O7 through Fe-substitution and its effects on photocatalytic hydrogen evolution. Appl. Catal. B 144, 261–268 (2014)

    Article  CAS  Google Scholar 

  53. Z.M. Niaki, M. Ghorbani, S.A. Ghoreishi, Synthesis of ZnFe2O4@ Uio-66 nanocomposite for the photocatalytic degradation of metronidazole antibiotic under visible light irradiation. J. Environ. Health Sci. Eng. 19(2), 1583–1596 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. M.M. Sajid et al., Photocatalytic performance of ferric vanadate (FeVO4) nanoparticles synthesized by hydrothermal method. Mater. Sci. Semicond. Process. 129, 105785 (2021)

    Article  CAS  Google Scholar 

  55. M.M. Sajid et al., Platinum doped bismuth vanadate (Pt/BiVO4) for enhanced photocatalytic pollutant degradation using visible light irradiation. J. Mater. Sci.: Mater. Electro. (2022). https://doi.org/10.1007/s10854-022-08431-2

    Article  Google Scholar 

  56. N.A. Shad et al., Facile synthesis of Bi2WO6/rGO nanocomposites for photocatalytic and solar cell applications. Ceram. Int. 47(11), 16101–16110 (2021)

    Article  CAS  Google Scholar 

  57. H. Liu et al., Bi7O9I3/reduced graphene oxide composite as an efficient visible-light-driven photocatalyst for degradation of organic contaminants. J. Mol. Catal. A: Chem. 391, 175–182 (2014)

    Article  CAS  Google Scholar 

  58. H.H. Hng, K.M. Knowles, Characterisation of Zn3 (VO4) 2 phases in V2O5-doped ZnO varistors. J. Eur. Ceram. Soc. 19(6–7), 721–726 (1999)

    Article  CAS  Google Scholar 

  59. W. Xiang et al., Accelerated photocatalytic degradation of iohexol over Co3O4/g-C3N4/Bi2O2CO3 of pn/nn dual heterojunction under simulated sunlight by persulfate. Appl. Catal. B 285, 119847 (2021)

    Article  CAS  Google Scholar 

  60. M.M. Sajid et al., Synthesis of Zn 3 (VO4) 2/BiVO 4 heterojunction composite for the photocatalytic degradation of methylene blue organic dye and electrochemical detection of H2O2. RSC Adv. 8(62), 35403–35412 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. M.M. Sajid et al., Generation of strong oxidizing radicals from plate-like morphology of BiVO4 for the fast degradation of crystal violet dye under visible light. Appl. Phys. A 126(4), 1–12 (2020)

    Article  Google Scholar 

  62. M.M. Sajid et al., Construction of 1T-MoS2 quantum dots-interspersed (Bi 1–x Fe x) VO4 heterostructures for electron transport and photocatalytic properties. RSC Adv. 11(22), 13105–13118 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. M.M. Sajid et al., Bismuth vanadate/MXene (BiVO4/Ti3C2) heterojunction composite: enhanced interfacial control charge transfer for highly efficient visible light photocatalytic activity. Environ. Sci. Pollut. Res. 28(27), 35911–35923 (2021)

    Article  CAS  Google Scholar 

  64. M.M. Sajid et al., Study of the interfacial charge transfer in bismuth vanadate/reduce graphene oxide (BiVO4/rGO) composite and evaluation of its photocatalytic activity. Res. Chem. Intermed. 46(2), 1201–1215 (2020)

    Article  CAS  Google Scholar 

  65. N. Liu et al., Sustainable photocatalytic disinfection of four representative pathogenic bacteria isolated from real water environment by immobilized TiO2-based composite and its mechanism. Chem. Eng. J. 426, 131217 (2021)

    Article  CAS  Google Scholar 

  66. A.V. Karim, S. Krishnan, A. Shriwastav, An overview of heterogeneous photocatalysis for the degradation of organic compounds: a special emphasis on photocorrosion and reusability. J. Indian Chem. Soc. (2022). https://doi.org/10.1016/j.jics.2022.100480

    Article  Google Scholar 

  67. A. Ali et al., Ultrasonic synthesis of CoSe 2-graphene-TiO2 ternary composites for high photocatalytic degradation performance. J. Korean Ceram. Soc. 54(3), 205–210 (2017)

    Article  CAS  Google Scholar 

  68. S. Kang et al., Hydrogen peroxide activated commercial P25 TiO2 as efficient visible-light-driven photocatalyst on dye degradation. Int. J. Electrochem. Sci. 12(6), 5284–5293 (2017)

    Article  CAS  Google Scholar 

  69. S.-Y. Chou et al., A series of BiO x I y/GO photocatalysts: synthesis, characterization, activity, and mechanism. RSC Adv. 6(86), 82743–82758 (2016)

    Article  CAS  Google Scholar 

  70. M.M. Sajid et al., Facile synthesis of Zn3 (VO4) 2/FeVO4 heterojunction and study on its photocatalytic and electrochemical properties. Appl. Nanosci. 10(2), 421–433 (2020)

    Article  CAS  Google Scholar 

  71. C.J. Liu, Y.HXu. Synthesis, Characterization and photocatalytic activities of bismuth vanadate by facile Co-precipitation method. Adv. Mater. Res. (2011). https://doi.org/10.4028/www.scientific.net/AMR.148-149.1469

    Article  Google Scholar 

  72. S. Moscow, K. Jothivenkatachalam, Facile microwave assisted synthesis of floral-shaped BiVO4 nano particles for their photocatalytic and photoelectrochemical performances. J. Mater. Sci.: Mater. Electron. 27(2), 1433–1443 (2016)

    CAS  Google Scholar 

  73. K. Kasinathan et al., Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications. Sci. Rep. 6(1), 1–12 (2016)

    Article  Google Scholar 

  74. Ivanovici, M., et al. Degradation of Rhodamine B by glass foam coated with WO3 and TiO2 under simulated solar radiation. in AIP Conference Proceedings. 2020. AIP Publishing LLC.

Download references

Acknowledgements

The authors are thankful to financially supported by the State Scholarship Fund of China Scholarship Council (No. 201808410144), the National Natural Science Foundation of China (No. 51202107), and the Foundation of Henan Educational Committee (No. 20A480003).

Funding

Funding was supported by Foundation of Henan Educational Committee, 20A480003, State Scholarship Fund of China Scholarship Council (No. 201808410144), the National Natural Science Foundation of China (No. 51202107), and the Foundation of Henan Educational Committee (No. 20A480003).

Author information

Authors and Affiliations

Authors

Contributions

MMS: Methodology, Material Experiments, Writing-Original draft preparation, photocatalysis data Analysis, Investigation; and Resource Management; HA: Material Characterization, Data Analysis, Editing, Validation and Reviewing; HZ: Materials Characterization, Reviewing, Editing.

Corresponding authors

Correspondence to Hasan Assaedi or Haifa Zhai.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajid, M.M., Assaedi, H. & Zhai, H. Tungsten doping effect on bismuth vanadate (W-doped BiVO4) under visible-light irradiation for photocatalysis. J Mater Sci: Mater Electron 35, 502 (2024). https://doi.org/10.1007/s10854-024-12257-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12257-5

Navigation